Question
Question: If the angles of a triangle \(A B C\) be in A.P., then...
If the angles of a triangle ABC be in A.P., then
A
c2=a2+b2−ab
B
b2=a2+c2−ac
C
a2=b2+c2−ac
D
b2=a2+c2
Answer
b2=a2+c2−ac
Explanation
Solution
A, B, C are in A. P. then angle

cosB=2aca2+c2−b2,
⇒ 21=2aca2+c2−b2⇒a2+c2−b2=ac
⇒ b2=a2+c2−ac.