Solveeit Logo

Question

Question: If the angles A, B, C of a triangle ABC are in arithmetical progression then...

If the angles A, B, C of a triangle ABC are in arithmetical

progression then

A

tanA+tanC3tanAtanC=3\tan A + \tan C - \sqrt{3}\tan A\tan C = \sqrt{3}

B

tanA+tanC+3tanAtanC=3\tan A + \tan C + \sqrt{3}\tan A\tan C = \sqrt{3}

C

tanA+tanC3tanAtanC=3\tan A + \tan C - \sqrt{3}\tan A\tan C = - \sqrt{3}

D

tanA+tanC+3tanAtanC=3\tan A + \tan C + \sqrt{3}\tan A\tan C = - \sqrt{3}

Answer

tanA+tanC+3tanAtanC=3\tan A + \tan C + \sqrt{3}\tan A\tan C = - \sqrt{3}

Explanation

Solution

Since A, B, C are in Arithmetical progression

2B=A+C2B = A + C also A + B +C = 1800 so that B = 600

In a triangle ABC, we know

TanA + tanB + tanC = tanAtanBtanC

⇒ tanA+tanC = 3\sqrt{3} (tanAtanC-(1)

⇒ tanA+tanC -3\sqrt{3}tanAtanC = 3- \sqrt{3}