Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If the angles A,BA, B and CC of a triangle are in an arithmetic progression and if a,ba, b and cc denote the lengths of the sides opposite to A,BA, B and CC respectively, then the value of the expression acsin2C+casin2A\frac{a}{c} sin \, 2 C + \frac{c}{a} sin \, 2 A is

A

12 \frac{1}{2}

B

32 \frac{\sqrt 3}{2}

C

1

D

3\sqrt 3

Answer

3\sqrt 3

Explanation

Solution

Since, A, B, C are in AP
2B=A+Ci,e,.,B=60\Rightarrow 2 B = A + C \, i, e,., \, \angle B = 60^\circ
ac(2sinCcosC)+ca\therefore \frac{a}{c} (2 \, sin \, C \, cos \, C ) + \frac{c}{a} (2 sin A cos A)
\hspace26mm [UsingasinA=bsinB=csinC=1k]\Bigg [ Using \, \frac{a}{ sin \, A } = \frac{b}{ sin \, B } = \frac{c}{ sin \, C } = \frac{1}{k} \Bigg]
= 2 k (b)
= 2 sin B \hspace26mm [using b = a cos C + ccos A]
= 3\sqrt 3