Solveeit Logo

Question

Mathematics Question on Differential equations

If the angle made by the tangent at the point (x 0, y 0) on the curve x = 12(t + sin t cos t),

y=12(1+sint)2,0<t<π2,y=12(1+sint)^2,0<t<\frac{π}{2},

with the positive x -axis is π/3, then y 0 is equal to

A

6(3+22)6(3+2\sqrt2)

B

3(7+43)3(7+4\sqrt3)

C

27

D

48

Answer

6(3+22)6(3+2\sqrt2)

Explanation

Solution

The correct option is(C): 27.

dydx=24(1+sint)cost12(1+cos2t)∵\frac{dy}{dx}=\frac{24(1+sint)cost}{12(1+cos2t)}

=1+sintcost=tan(π4+t2)=\frac{1+sint}{cost}=tan(\frac{\pi}{4}+\frac{t}{2})

t=π6t=\frac{\pi}{6}

So,

y0(attπ6=12(1+sinπ6)2=27.y_0(at\,t\frac{\pi}{6}=12(1+sin\frac{\pi}{6})^2=27.