Solveeit Logo

Question

Mathematics Question on Straight lines

If the angle between two lines is π4\frac{\pi}{4} and slope of one of the lines is 12\frac{1}{2}, find the slope of the other line.

A

33 or 13\frac{-1}{3}

B

22 or 12\frac{-1}{2}

C

44 or 14\frac{-1}{4}

D

33 or 3-3

Answer

33 or 13\frac{-1}{3}

Explanation

Solution

We know that the acute angle θ\theta between two lines with slopes m1m_1 and m2m_2 is given by tanθ=m2m11+m1m2(i)tan\,\theta=\left|\frac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right|\quad\ldots\left(i\right) Let m1=12m_{1}=\frac{1}{2}, m2=mm_{2}=m and θ=π4\theta=\frac{\pi}{4}. Now, putting these values in (i)\left(i\right), we get tanπ4=m121+12mtan \frac{\pi}{4}=\left|\frac{m-\frac{1}{2}}{1+\frac{1}{2}m}\right| 1=2m12+m\Rightarrow 1=\left|\frac{2m-1}{2+m}\right|, wihich gives 2m12+m=1\frac{2m-1}{2+m}=1 or 2m12+m=1\frac{2m-1}{2+m}=-1 Therefore m=3m = 3 or m=13m=-\frac{1}{3} Hence, slope of the other line is 33 or 13-\frac{1}{3}.