Solveeit Logo

Question

Physics Question on Motion in a plane

If the angle between the vectors A \overrightarrow{A} and B \overrightarrow{B} is θ,\theta, the value of the product (B×A)A ( \overrightarrow{B} \times \overrightarrow{A}) \cdot \overrightarrow{A} is equal to

A

B A2sinθ A^2 \sin \theta

B

B A2cosθ A^2 \cos \theta

C

B A2sinθcosθ A^2 \sin \theta \cos \theta

D

zero

Answer

zero

Explanation

Solution

Let A×B=C\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C}
The cross product of B \overrightarrow{B} and A\overrightarrow{A} is perpendicular to the plane containing A \overrightarrow{A} and B\overrightarrow{B}

i, e perpendicular to A \overrightarrow{A}. If a dot product of this cross product and A \overrightarrow{A} is taken, as the cross product is perpendicular to A\overrightarrow{A} , C×A=0\overrightarrow{C} \times \overrightarrow{A} = 0.
Therefore product of (B×A)A=0( \overrightarrow{B} \times \overrightarrow{A} ) \cdot \overrightarrow{A} = 0 .