Solveeit Logo

Question

Question: If the angle between the pair of straight lines represented by the equation \[{x^2} - 3xy + \lambda ...

If the angle between the pair of straight lines represented by the equation x23xy+λy2+3x5y+2=0{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0 is tan1(13){\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) where ‘λ\lambda ’ is non-negative real number, then find ‘λ\lambda ’.

Explanation

Solution

The angle between the lines represented by ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 is given by tanθ=2h2aba+b\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|
θ=tan12h2aba+b\Rightarrow \theta = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|
The lines are parallel if the angle between them is zero. Thus, the lines are parallel if θ=0\theta = 0
tanθ=02h2aba+b=0\Rightarrow \tan \theta = 0 \Rightarrow \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right| = 0
h2=ab\Rightarrow {h^2} = ab

Complete step by step answer:
Given equation of the pair of straight lines represented by x23xy+λy2+3x5y+2=0{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0…….(i)
As we know that the angle between the lines represented by ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 is given by tanθ=2h2aba+b\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|
Consider ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 …………..(ii)
On comparing equation (i) and (ii) we get the values as a=1,b=λa = 1,b = \lambda and h=32h = \dfrac{{ - 3}}{2}.
Also the angle between the pair of straight lines represented by the equation x23xy+λy2+3x5y+2=0{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0 is tan1(13){\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right).
Let θ\theta be the angle between the pair of straight lines represented by the equation
x23xy+λy2+3x5y+2=0\Rightarrow {x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0 is tan1(13){\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right).
Therefore, θ=tan1(13)\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)………….(iii)
Now consider, tanθ=2h2aba+b\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right| and
θ=tan1(13)\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)
From equation tanθ=2h2aba+b\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right| we can find out the value of the angle θ\theta .
As tanθ=2h2aba+b\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|
θ=tan12h2aba+b\Rightarrow \theta = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right| ……………..(iv)
As L.H.S of equation (iii) and (iv) are equal therefore their R.H.S are also equal therefore,
tan1(13)=tan12h2aba+b{\Rightarrow \tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|
Now substituting the values as a=1,b=λa = 1,b = \lambda and h=32h = \dfrac{{ - 3}}{2} we get,
tan1(13)=tan12(32)21×λ1+λ{\Rightarrow \tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} - 1 \times \lambda } }}{{1 + \lambda }}} \right|
We can cancel out tan1{\tan ^{ - 1}} from both sides. So we are now left with the equation
13=2(32)2λ1+λ\Rightarrow \dfrac{1}{3} = \dfrac{{2\sqrt {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} - \lambda } }}{{1 + \lambda }}
Solving the numerator of R.H.S we get,
13=294λ41+λ\Rightarrow \dfrac{1}{3} = \dfrac{{2\sqrt {\dfrac{{9 - 4\lambda }}{4}} }}{{1 + \lambda }}.
By cross multiplication we get,
1+λ1=3×2×94λ41\Rightarrow \dfrac{{1 + \lambda }}{1} = \dfrac{{3 \times 2 \times \sqrt {\dfrac{{9 - 4\lambda }}{4}} }}{1}
1+λ6=94λ4\Rightarrow \dfrac{{1 + \lambda }}{6} = \sqrt {\dfrac{{9 - 4\lambda }}{4}}
Taking square on both sides we get,
(1+λ6)2=(94λ4)2\Rightarrow {(\dfrac{{1 + \lambda }}{6})^2} = {(\sqrt {\dfrac{{9 - 4\lambda }}{4}} )^2}
By applying the identity (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab and on further solving we get,
1+λ2+2λ36=94λ4\Rightarrow \dfrac{{1 + {\lambda ^2} + 2\lambda }}{{36}} = \dfrac{{9 - 4\lambda }}{4}
Again by cross multiplication and on further simplification we get,
(1+λ2+2λ)=9×(94λ)\Rightarrow (1 + {\lambda ^2} + 2\lambda ) = 9 \times (9 - 4\lambda )
λ2+38λ80=0\Rightarrow {\lambda ^2} + 38\lambda - 80 = 0
This is a quadratic equation so it must be having two roots. That means we get two values of λ\lambda satisfying the above equation.
We get values by applying the formula λ=b±D2a\lambda = \dfrac{{ - b \pm \sqrt D }}{{2a}}
λ=3817642=38422=802=40\Rightarrow \lambda = \dfrac{{ - 38 - \sqrt {1764} }}{2} = \dfrac{{ - 38 - 42}}{2} = \dfrac{{ - 80}}{2} = - 40 or
λ=38+19202=38+422=42=2\Rightarrow \lambda = \dfrac{{ - 38 + \sqrt {1920} }}{2} = \dfrac{{ - 38 + 42}}{2} = \dfrac{4}{2} = 2
Hence the values of λ\lambda are 40 - 40 and 2.

Since λ\lambda is a non-negative real number so the value of λ=2.\lambda = 2.

Note:
The angle between the lines represented by ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 is given by tanθ=2h2aba+b\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|
The lines represented by ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 are parallel h2=ab{h^2} = ab.
Since λ\lambda is a non-negative real number so we will only consider the positive value of λ\lambda .