Solveeit Logo

Question

Question: If the angle between the pair of straight lines represented by the equation \(x^{2} - 3xy + \lambda ...

If the angle between the pair of straight lines represented by the equation x23xy+λy2+3x5y+2=0x^{2} - 3xy + \lambda y^{2} + 3x - 5y + 2 = 0is tan1(13)\tan^{- 1}\left( \frac{1}{3} \right), where λ\lambdais a non- negative real number, then λ\lambdais

A

2

B

0

C

3

D

1

Answer

2

Explanation

Solution

Given that θ=tan1(13)tanθ=13\theta = \tan^{- 1}\left( \frac{1}{3} \right) \Rightarrow \tan\theta = \frac{1}{3}Now, since tanθ=2h2aba+b\tan\theta = \left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right|13\frac{1}{3}= 2(32)2λλ+1\left| \frac{2\sqrt{\left( \frac{- 3}{2} \right)^{2} - \lambda}}{\lambda + 1} \right|

(λ+1)2=9(94λ)(\lambda + 1)^{2} = 9(9 - 4\lambda)λ2+38λ80=0\lambda^{2} + 38\lambda - 80 = 0

λ2+40λ2λ80=0\lambda^{2} + 40\lambda - 2\lambda - 80 = 0λ(λ+40)2(λ+40)=0\lambda(\lambda + 40) - 2(\lambda + 40) = 0

(λ2)(λ+40)=0(\lambda - 2)(\lambda + 40) = 0λ=2\lambda = 2 or – 40,

but λ\lambda is a non-negative real number. Hence λ=2\lambda = 2