Solveeit Logo

Question

Question: If the angle between the lines represented by the equation ![](https://cdn.pureessence.tech/canvas_2...

If the angle between the lines represented by the equation tan2A=0\tan^{2}A = 0be 2A2A, then k=k =

A

0

B

1

C

2

D

tanA\tan A

Answer

0

Explanation

Solution

Here tan2A=2k24+tan2A1tan2A\tan 2A = \frac{2\sqrt{\frac{k^{2}}{4} + \tan^{2}A}}{1 - \tan^{2}A}

2tanA1tan2A=2k24+tan2A1tan2A\Rightarrow \frac{2\tan A}{1 - \tan^{2}A} = \frac{2\sqrt{\frac{k^{2}}{4} + \tan^{2}A}}{1 - \tan^{2}A}

k24+tan2A=tan2Ak=0\Rightarrow \frac{k^{2}}{4} + \tan^{2}A = \tan^{2}A \Rightarrow k = 0 .