Solveeit Logo

Question

Mathematics Question on Linear Equations in two variables

If the angle between a = 2y2i^+4yj^+k^2y^2 \hat{i} + 4y \hat{j} + \hat{k} and b = 7i^2j^+yk^7\hat{i} - 2\hat{j} + y\hat{k} is obtuse, then:

A

0<y<120 < y < \frac{1}{2}

B

1<y<12-1 < y < -\frac{1}{2}

C

12<y<1\frac{1}{2} < y < 1

D

12<y<0-\frac{1}{2} < y < 0

Answer

0<y<120 < y < \frac{1}{2}

Explanation

Solution

The angle between two vectors a\vec{a} and b\vec{b} is obtuse if their dot product is negative, i.e., ab<0\vec{a} \cdot \vec{b} < 0.

a=2y2i^+4yj^+k^,b=7i^2j^+yk^\vec{a} = 2y^{2}\hat{i} + 4y\hat{j} + \hat{k}, \quad \vec{b} = 7\hat{i} - 2\hat{j} + y\hat{k}

The dot product ab\vec{a} \cdot \vec{b} is:

ab=(2y2)(7)+(4y)(2)+(1)(y)\vec{a} \cdot \vec{b} = (2y^{2})(7) + (4y)(-2) + (1)(y)

Simplify each term:

ab=14y28y+y=14y27y\vec{a} \cdot \vec{b} = 14y^2 - 8y + y = 14y^2 - 7y

For the angle to be obtuse, we require:

14y27y<014y^2 - 7y < 0

Factorize:

7y(2y1)<07y(2y - 1) < 0

The critical points are y=0y = 0 and y=12y = \frac{1}{2}. Using a sign analysis for 7y(2y1)7y(2y - 1):

  • For y(0,12)y \in (0, \frac{1}{2}), 7y>07y > 0 and (2y1)<0(2y - 1) < 0, so the product is negative.
  • For y<0y < 0 or y>12y > \frac{1}{2}, the product is non-negative.

Thus, the solution is:

0<y<120 < y < \frac{1}{2}

Hence, the correct answer is:

0<y<120 < y < \frac{1}{2}