Solveeit Logo

Question

Question: If the A.M., G.M. and H.M. between two positive numbers *a* and *b* are equal, then...

If the A.M., G.M. and H.M. between two positive numbers a and b are equal, then

A

a = b

B

ab = 1

C

a>b

D

a<b

Answer

a = b

Explanation

Solution

\bullet \bullet A.M. = G.M.

a+b2=ab\frac { a + b } { 2 } = \sqrt { a b }(a)22ab+(b)22=0\frac { ( \sqrt { a } ) ^ { 2 } - 2 \sqrt { a } \sqrt { b } + ( \sqrt { b } ) ^ { 2 } } { 2 } = 0

(ab)22=0\frac { ( \sqrt { a } - \sqrt { b } ) ^ { 2 } } { 2 } = 0a=ba = b

\bullet \bullet G.M. = H.M.

ab=2aba+b\sqrt { a b } = \frac { 2 a b } { a + b }a+b2ab=0a + b - 2 \sqrt { a b } = 0

(ab)2=0( \sqrt { a } - \sqrt { b } ) ^ { 2 } = 0

a=b\sqrt { a } = \sqrt { b }a=ba = b

Thus A.M. =(G.M.) (H.M.) So a=ba = b