Question
Question: If the adjacent sides of a triangle are represented by the vectors \[\hat i + 2\hat j + 2\hat k\] an...
If the adjacent sides of a triangle are represented by the vectors i^+2j^+2k^ and 3i^−2j^+k^, then the area of the triangle is
A) 266
B) 3116
C) 256
D) 2116
Solution
The magnitude of the product is by definition the area of a parallelogram spanned by when placed tail-to-tail.
Formula used:
The cross product of two vectors is given by the following formula
\overrightarrow a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k \\
\overrightarrow b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k \\
\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&2 \\
3&{ - 2}&1
\end{array}} \right] = \hat i\{ 2 \times 1 - 2 \times ( - 2)\} - \hat j(1 \times 1 - 2 \times 3) + \hat k\{ 1 \times ( - 2) - 2 \times 3\} \\
= \hat i(2 + 4) - \hat j(1 - 6) + \hat k( - 2 - 6) \\
= 6\hat i + 5\hat j - 8\hat k \\
\left| {6\hat i + 5\hat j - 8\hat k} \right| = \sqrt {{6^2} + {5^2} + {{( - 8)}^2}} \\
= \sqrt {36 + 25 + 64} \\
= \sqrt {125} \\
\dfrac{1}{2}\left| {\overrightarrow {AB} \times \overrightarrow {BC} } \right| \\
= \dfrac{{\sqrt {125} }}{2}units \\