Solveeit Logo

Question

Question: If the \({{3}^{rd}}\) , \({{4}^{th}}\) , \({{5}^{th}}\) and \({{6}^{th}}\) terms in the expansion of...

If the 3rd{{3}^{rd}} , 4th{{4}^{th}} , 5th{{5}^{th}} and 6th{{6}^{th}} terms in the expansion of (x+a)n{{\left( x+\text{a} \right)}^{n}} be respectively a,b,c and d,a,b,c\text{ and }d, then prove that b2acc2bd=5a3c\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c}.

Explanation

Solution

Hint: For solving this question first, we will expand the given term using the binomial expansion formulae and then form some equations as per the given data and then prove the result.

Complete step-by-step answer:
Given:
If 3rd{{3}^{rd}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is aa , 4th{{4}^{th}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is bb , 5th{{5}^{th}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is cc and 6th{{6}^{th}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is dd . And we have to prove that, b2acc2bd=5a3c\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c} .
Now, we will use the following binomial expansion result:
(x+y)n=nC0xn+nC1xn1y+nC2xn2y2+nC3xn3y3+nC4xn4y4+nC5xn5y5+....................+nCnyn{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot y+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{y}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{y}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{y}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{y}^{5}}+....................+{}^{n}{{C}_{n}}{{y}^{n}}
We can apply the above result to expand (x+a)n{{\left( x+\text{a} \right)}^{n}} . Then,
(x+a)n=nC0xn+nC1xn1a+nC2xn2a2+nC3xn3a3+nC4xn4a4+nC5xn5a5+....................+nCnan{{\left( x+\text{a} \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot \text{a}+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{\text{a}}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{\text{a}}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{\text{a}}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{\text{a}}^{5}}+....................+{}^{n}{{C}_{n}}{{\text{a}}^{n}}
Where, nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} .
Now, let Tr{{T}_{r}} represent the rth{{r}^{th}} term in the above expression. It is given to us that 3rd{{3}^{rd}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is aa , 4th{{4}^{th}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is bb , 5th{{5}^{th}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is cc and 6th{{6}^{th}} term in the expansion of (x+y)n{{\left( x+y \right)}^{n}} is dd . Then,
T3=a=nC2xn2a2=n(n1)2xn2a2{{T}_{3}}=a={}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{\text{a}}^{2}}=\dfrac{n\cdot \left( n-1 \right)}{2}\cdot {{x}^{n-2}}\cdot {{a}^{2}}
T4=b=nC3xn3a3=n(n1)(n2)6xn3a3{{T}_{4}}=b={}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{\text{a}}^{3}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}}
T5=c=nC4xn4a4=n(n1)(n2)(n3)24xn4a4{{T}_{5}}=c={}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{\text{a}}^{4}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}}
T6=d=nC5xn5a5=n(n1)(n2)(n3)(n4)120xn5a5{{T}_{6}}=d={}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{\text{a}}^{5}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)\cdot \left( n-4 \right)}{120}\cdot {{x}^{n-5}}\cdot {{\text{a}}^{5}}
Now, we will calculate the expression of ba,cb\dfrac{b}{a},\dfrac{c}{b} and dc\dfrac{d}{c} .
T4T3=ba=(n(n1)(n2)6xn3a3)(n(n1)2xn2a2) ba=(n23)(ax)....................(1) \begin{aligned} & \dfrac{{{T}_{4}}}{{{T}_{3}}}=\dfrac{b}{a}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)}{2}\cdot {{x}^{n-2}}\cdot {{a}^{2}} \right)} \\\ & \Rightarrow \dfrac{b}{a}=\left( \dfrac{n-2}{3} \right)\cdot \left( \dfrac{\text{a}}{x} \right)....................\left( 1 \right) \\\ \end{aligned}
T5T4=cb=(n(n1)(n2)(n3)24xn4a4)(n(n1)(n2)6xn3a3) cb=(n34)(ax)................(2) \begin{aligned} & \dfrac{{{T}_{5}}}{{{T}_{4}}}=\dfrac{c}{b}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}} \right)} \\\ & \Rightarrow \dfrac{c}{b}=\left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right)................\left( 2 \right) \\\ \end{aligned}
T6T5=dc=(n(n1)(n2)(n3)(n4)120xn5a5)(n(n1)(n2)(n3)24xn4a4) dc=(n45)(ax)................(3) \begin{aligned} & \dfrac{{{T}_{6}}}{{{T}_{5}}}=\dfrac{d}{c}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)\cdot \left( n-4 \right)}{120}\cdot {{x}^{n-5}}\cdot {{\text{a}}^{5}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}} \right)} \\\ & \Rightarrow \dfrac{d}{c}=\left( \dfrac{n-4}{5} \right)\cdot \left( \dfrac{a}{x} \right)................\left( 3 \right) \\\ \end{aligned}
Now, we will try to evaluate b2acc2bd\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd} . Then,
b2acc2bd=ab(bacb)bc(cbdc)\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{b}{a}-\dfrac{c}{b} \right)}{bc\left( \dfrac{c}{b}-\dfrac{d}{c} \right)}
Now, substitute the value of ba,cb\dfrac{b}{a},\dfrac{c}{b} and dc\dfrac{d}{c} from (1), (2) and (3) in the above expression. Then,

b2acc2bd=ab(bacb)bc(cbdc)=ab((n23)(ax)(n34)(ax))bc((n34)(ax)(n45)(ax)) b2acc2bd=ab(n23n34)bc(n34n45)=a(4n83n+912)c(5n154n+1620) b2acc2bd=a(n+112)c(n+120)=20a12c b2acc2bd=5a3c \begin{aligned} & \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{b}{a}-\dfrac{c}{b} \right)}{bc\left( \dfrac{c}{b}-\dfrac{d}{c} \right)}=\dfrac{ab\left( \left( \dfrac{n-2}{3} \right)\cdot \left( \dfrac{\text{a}}{x} \right)-\left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right) \right)}{bc\left( \left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right)-\left( \dfrac{n-4}{5} \right)\cdot \left( \dfrac{a}{x} \right) \right)} \\\ & \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{n-2}{3}-\dfrac{n-3}{4} \right)}{bc\left( \dfrac{n-3}{4}-\dfrac{n-4}{5} \right)}=\dfrac{a\left( \dfrac{4n-8-3n+9}{12} \right)}{c\left( \dfrac{5n-15-4n+16}{20} \right)} \\\ & \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{a\left( \dfrac{n+1}{12} \right)}{c\left( \dfrac{n+1}{20} \right)}=\dfrac{20a}{12c} \\\ & \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c} \\\ \end{aligned}
Thus, from the above result, we can say that b2acc2bd=5a3c\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c} .
Hence Proved.

Note: Here, the student must proceed stepwise to prove the result and don’t skip any step and in such questions before doing the calculation first analyse the result which we have to prove in such questions after getting the idea about which term we can evaluate to prove the result without any mistake.