Solveeit Logo

Question

Mathematics Question on Sequence and series

If the 2nd,5th2^{nd}, 5^{th} and 9th9^{th} terms of a non-constant A.P.A.P. are in G.P.G.P., then the common ratio of this G.P.G.P. is :

A

85\frac{8}{5}

B

43\frac{4}{3}

C

1

D

74\frac{7}{4}

Answer

43\frac{4}{3}

Explanation

Solution

t2=a+dt_2 = a + d
t5=a+4dt_5 = a + 4d
t9=a+8dt_9 = a + 8d
Given t2,t5,t9t_2 , t_5 , t_9 are in G.PG.P.
(a+4d)2=(a+d)(A+8d)(a + 4d)^2 = (a +d) (A + 8d)
a2+16d2+8ad=a2+8d2+9ada^2 + 16d^2 + 8ad = a^2 + 8d^2 + 9ad
8d2ad=08d^2 - ad = 0
d(8da)=0d(8d - a) = 0
As given non - constant APAP.
d0\Rightarrow \, d \neq 0
d=a8\therefore \, d = \frac{a}{8}
a=8d\Rightarrow a = 8 d
so, A.PA.P is 8d,9d,10d8d , 9d ,10 d ,....
Common ratio of G.P.=t5t2=a+4da+d=12d9d=43G.P. = \frac{t_5}{t_2} = \frac{a+4d}{a+d} = \frac{12d}{9d} = \frac{4}{3}