Solveeit Logo

Question

Question: If the 17\textsuperscript{th} and the 18\textsuperscript{th} terms in the expansion of $(2 + a)^{50}...

If the 17\textsuperscript{th} and the 18\textsuperscript{th} terms in the expansion of (2+a)50(2 + a)^{50} are equal, then the coefficient of x35x^{35} in the expansion of (a+x)2(a + x)^{-2} is

Answer

-36

Explanation

Solution

To solve this problem:

  1. Find the value of 'a': Use the equality of the 17th and 18th terms in the binomial expansion of (2+a)50(2+a)^{50}. The general term in a binomial expansion is given by Tr+1=(nr)XnrYrT_{r+1} = \binom{n}{r} X^{n-r} Y^r.

    • T17=(5016)(2)5016(a)16=(5016)234a16T_{17} = \binom{50}{16} (2)^{50-16} (a)^{16} = \binom{50}{16} 2^{34} a^{16}
    • T18=(5017)(2)5017(a)17=(5017)233a17T_{18} = \binom{50}{17} (2)^{50-17} (a)^{17} = \binom{50}{17} 2^{33} a^{17}

    Setting T17=T18T_{17} = T_{18}:

    (5016)234a16=(5017)233a17\binom{50}{16} 2^{34} a^{16} = \binom{50}{17} 2^{33} a^{17}

    Simplifying, we use the identity (nr)(nr+1)=r+1nr\frac{\binom{n}{r}}{\binom{n}{r+1}} = \frac{r+1}{n-r}, which gives us a=1a = 1.

  2. Find the coefficient of x35x^{35} in the expansion of (a+x)2(a+x)^{-2}: Substitute a=1a=1 into the expression, resulting in (1+x)2(1+x)^{-2}. The binomial expansion for (1+x)n(1+x)^n is given by:

    (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots

    In this case, n=2n=-2. The coefficient of xrx^r is given by:

    Coefficient of xr=(2)(21)(22)(2r+1)r!=(1)r(r+1)x^r = \frac{(-2)(-2-1)(-2-2)\dots(-2-r+1)}{r!} = (-1)^r (r+1)

    For x35x^{35}, r=35r=35, so the coefficient is:

    Coefficient of x35=(1)35(35+1)=36x^{35} = (-1)^{35} (35+1) = -36

Therefore, the coefficient of x35x^{35} in the expansion of (a+x)2(a + x)^{-2} is -36.