Solveeit Logo

Question

Question: If the \(10 ^ { t h }\) term of a geometric progression is 9 and \(4 ^ { t h }\) term is 4, then...

If the 10th10 ^ { t h } term of a geometric progression is 9 and 4th4 ^ { t h } term is 4, then its term is.

A

6

B

36

C

49\frac { 4 } { 9 }

D

94\frac { 9 } { 4 }

Answer

6

Explanation

Solution

Accordingly, ar9=9a r ^ { 9 } = 9 and ar3=4a r ^ { 3 } = 4

\Rightarrow r3=32r ^ { 3 } = \frac { 3 } { 2 } and a=83a = \frac { 8 } { 3 }.

\therefore term i.e. ar6=83(32)2=6a r ^ { 6 } = \frac { 8 } { 3 } \left( \frac { 3 } { 2 } \right) ^ { 2 } = 6.

Trick : term is equidistant from and 4th4 ^ { t h } so it will be 9×4=6\sqrt { 9 \times 4 } = 6.