Solveeit Logo

Question

Mathematics Question on Vector Algebra

If θ is the angle between two vectors a\vec a and b\vec b, then a.b\vec a.\vec b≥0 only when

A

0<θ<π2\frac{\pi}{2}

B

0≤θ≤π2\frac{\pi}{2}

C

0<θ<π

D

0≤θ≤π

Answer

0≤θ≤π2\frac{\pi}{2}

Explanation

Solution

Let θ be the angle between two vectors a\vec a and b\vec b.
Then, without loss of generality,a\vec a and b\vec b are non-zero vectors so that |a\vec a|and |b\vec b|are positive.
It is known that a\vec a.b\vec b=|a\vec a||b\vec b|cosθ.
a\vec a.b\vec b≥0
⇒ |a\vec a||b\vec b|cosθ≥0
⇒ cosθ≥0 [|a\vec a|and|b\vec b|are positive]
⇒ 0≤θ≤π2\frac{\pi}{2}
Hence,a\vec a.b\vec b≥0 when 0≤θ≤π2\frac{\pi}{2}.
The correct answer is B.