Question
Question: If \(\text{cosec}\theta = \frac{p + q}{p - q},\) then \(\cot\left( \frac{\pi}{4} + \frac{\theta}{2} ...
If cosecθ=p−qp+q, then cot(4π+2θ)=
A
qp
B
pq
C
pq
D
pq
Answer
pq
Explanation
Solution
Given, cosecθ=p−qp+q⇒sinθ1=p−qp+q,
Apply componendo and dividendo,
1−sinθ1+sinθ=p+q−p−qp+q+p−q⇒[cos2θ−sin2θcos2θ+sin2θ]2=qp⇒[1−tanθ/21+tanθ/2]2=qp⇒tan2(4π+2θ)=qp⇒cot2(4π+2θ)=pqNote : cot(4π+2θ)=pq only if cot(4π+2θ)>0.