Solveeit Logo

Question

Question: If \[{\text{z = }}\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}\] ,then the value of \[{{\text{z}}^{...

If z = 1 + i2{\text{z = }}\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }} ,then the value of z1929{{\text{z}}^{1929}} is
A. 1+i1 + i
B. -1
C. 1 + i2\dfrac{{{\text{1 + i}}}}{{\text{2}}}
D. 1 + i2\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}

Explanation

Solution

Here we have to use the idea of z|z| and argument of z . Than use the concept of writing of z=x+iyz = x + iy as zeiθ,|z|{e^{i\theta }}, where θ=tan1yx\theta = {\tan ^{ - 1}}\dfrac{y}{x} . And then proceed with dividing the angle and apply general trigonometry.

Complete step by step answer:

As per the given equation, z=1+i2z = \dfrac{{1 + i}}{{\sqrt 2 }}
We have x=12x = \dfrac{1}{{\sqrt 2 }} and y=12y = \dfrac{1}{{\sqrt 2 }} ,
As, z=x2+y2|z| = \sqrt {{x^2} + {y^2}}
On substituting values of x and y we get,
\Rightarrow |z=(12)2+(12)2{\text{|z}}| = \sqrt {{{(\dfrac{1}{{\sqrt 2 }})}^2} + {{(\dfrac{1}{{\sqrt 2 }})}^2}}
On simplification we get,
\Rightarrow |z=12+12{\text{|z}}| = \sqrt {\dfrac{1}{2} + \dfrac{1}{2}}
\Rightarrow |z=1{\text{|z}}| = \sqrt 1
On taking positive square root we get,
\Rightarrow z=1|z| = 1
Now proceeding with the calculation of the argument of z.
θ = tan - 1yx{\text{$\theta$ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{y}}}{{\text{x}}}
On substituting the value of x and y we get,
θ=tan - 11212\Rightarrow \theta = {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}
On simplification we get,

θ=tan1(1) θ=π4  \Rightarrow \theta = {\tan ^{ - 1}}(1) \\\ \Rightarrow \theta = \dfrac{\pi }{4} \\\

Hence, the given equation can also be converted into the form of |z|eiθ {\text{|z|}}{{\text{e}}^{{\text{${i\theta}$ }}}},
z\Rightarrow z = |z|eiθ {\text{|z|}}{{\text{e}}^{{\text{${i\theta}$ }}}}

z = eiπ 4  \Rightarrow {\text{z = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}} \\\

So,
z1929 = e(1929)iπ 4\Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{(1929)i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}
Now as 1929(π4)=482π+π41929(\dfrac{\pi }{4}) = 482\pi + \dfrac{\pi }{4}, so we get,
z1929 = ei(482π + π 4)\Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{i(482$\pi$ + }}\dfrac{{\text{$\pi$ }}}{{\text{4}}}{\text{)}}}}
Now as 482π+π4=π4482\pi + \dfrac{\pi }{4} = \dfrac{\pi }{4}, so we get,
z1929 = eiπ 4\Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}
As we have z = eiπ 4{\text{z = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}
z1929 = z = 1 + i2\Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = z = }}\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}
Hence, option (d) is our correct answer.

Note: A complex number is a number that can be expressed in the form a + bia{\text{ }} + {\text{ }}bi, where a and b are real numbers, and i represents the imaginary unit. Because no real number satisfies this equation, i is called an imaginary number. Where θ=argz\theta = \arg z and so we can state that, much like the polar form, there are an infinite number of possible exponential forms for a given complex number. Also, because any two arguments for a give complex number differ by an integer multiple of 2$\pi$ . we will sometimes write the exponential form as, z = r{e^{i(\theta + 2$\pi$ n)}},n = \pm 1, \pm 2...