Solveeit Logo

Question

Question: If \({\text{y = }}{{\text{x}}^{\text{x}}}\) , prove that \(\dfrac{{{{\text{d}}^{\text{2}}}{\text{...

If y = xx{\text{y = }}{{\text{x}}^{\text{x}}} , prove that
d2ydx2 - 1y(dydx)2 - yx = 0\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}

Explanation

Solution

First we apply the logarithm function on the both sides of the equation y = xx{\text{y = }}{{\text{x}}^{\text{x}}}, then we’ll proceed towards finding the first derivative of the equation with respect to the independent variable i.e. x. similarly, we’ll find the double derivative of the function. After getting the first and second derivates of the function we’ll use the substitution method to eliminate the terms that are not required to get our answer.

Complete step by step answer:

Given data: y = xx{\text{y = }}{{\text{x}}^{\text{x}}}
On applying logarithm function on both sides, we get
ln(y) = ln(xx){\text{ln(y) = ln(}}{{\text{x}}^{\text{x}}}{\text{)}}
It is well known that, lnab = blna{\text{ln}}{{\text{a}}^{\text{b}}}{\text{ = blna}},
lny = xln(x)\Rightarrow {\text{lny = xln(x)}}
Now, differentiating both sides with respect to x,
Using, chain rule and multiplication rule i.e.
df(z)dx = f’(z)dzdx, and d(uv) = udv + vdu  \dfrac{{{\text{df(z)}}}}{{{\text{dx}}}}{\text{ = f'(z)}}\dfrac{{{\text{dz}}}}{{{\text{dx}}}}{\text{, and}} \\\ {\text{d(uv) = udv + vdu}} \\\
1ydydx = x(1x) + lnx 1ydydx = 1 + lnx..........(i)  \dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = x}}\left( {\dfrac{{\text{1}}}{{\text{x}}}} \right){\text{ + lnx}} \\\ \Rightarrow \dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = 1 + lnx}}..........{\text{(i)}} \\\
Multiplying ‘y’ with the whole equation
dydx = y + ylnx................(ii)\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = y + ylnx}}................{\text{(ii)}}
Again, on differentiating both sides with respect to x,
d2ydx2 = dydx + yx + dydxlnx d2ydx2 = dydx(1 + lnx) + yx..........(iii)  \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{lnx}} \\\ \Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(1 + lnx) + }}\dfrac{{\text{y}}}{{\text{x}}}..........{\text{(iii)}} \\\
Now, substituting the value of (1+lnx) from equation(i) to equation(iii), we’ll be left with

d2ydx2 = dydx(1ydydx) + yx d2ydx2 = 1y(dydx)2 + yx d2ydx2 - 1y(dydx)2 - yx = 0  \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}} \\\ \Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}} \\\ \Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}} \\\

Hence, we obtained our equation i.e. d2ydx2 - 1y(dydx)2 - yx = 0\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}

Note: Alternative solution for this question can be done by substituting the value of first and second derivatives directly to the equation that has to be proved.
d2ydx2 - 1y(dydx)2 - yx = 0\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}
On substituting the value of dydx and d2ydx2\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ and }}\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}} to the left-hand side of the equation, we get,

dydx(1ydydx) + yx - 1y(y + ylnx)2 - yx  = 1y(dydx)2 - y2y(1 + lnx)2  \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}} \\\ {\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}} \\\
On simplification we get,
 = 1y(dydx)2 - y(1 + lnx)2{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}
On substituting the value of dydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}, we have
 = 1y(y + ylnx)2 - y(1 + lnx)2{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}
On taking y2{{\text{y}}^{\text{2}}}out of the first term, we get,
 = y2y(1 + lnx)2 - y(1 + lnx)2{\text{ = }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}
 = y(1 + lnx)2 - y(1 + lnx)2{\text{ = y(1 + lnx}}{{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}
 = 0{\text{ = 0}}
i.e. equal to the right-hand side
Therefore, d2ydx2 - 1y(dydx)2 - yx = 0\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}, holds of y = xx{\text{y = }}{{\text{x}}^{\text{x}}}