Solveeit Logo

Question

Question: If \({\text{x + y = 9}}\), \({\text{y + z = 7}}\) and \({\text{z + x = 5}}\) then- A) \({\text{x +...

If x + y = 9{\text{x + y = 9}}, y + z = 7{\text{y + z = 7}} and z + x = 5{\text{z + x = 5}} then-
A) x + y + z = 10{\text{x + y + z = 10}}
B) Arithmetic mean of x, y, z is 3.53.5
C) median of x, y, z is 3.53.5
D)x + y + z = 10.5{\text{x + y + z = 10}}.5

Explanation

Solution

We can find the arithmetic mean by using formula, Arithmetic mean=sum of the variablestotal number of variables\dfrac{{{\text{sum of the variables}}}}{{{\text{total number of variables}}}}.
On adding the given three equations we can find the sum of the variables x, y, z.

Complete step-by-step answer:
We are given, x + y = 9{\text{x + y = 9}} --- (i)
y + z = 7{\text{y + z = 7}}--- (ii)
z + x = 5{\text{z + x = 5}} --- (iii)
To find the sum of all the variables, add eq. (i), (ii) and (iii).
x + y + y + z + z + x = 9 + 7 + 5\Rightarrow {\text{x + y + y + z + z + x = 9 + 7 + 5}}
On adding the given values we get,
2x + 2y + 2z = 21\Rightarrow 2{\text{x + 2y + 2z = 21}}
On taking 22 common in the equation, we get
2(x + y + z) = 21\Rightarrow 2\left( {{\text{x + y + z}}} \right){\text{ = 21}}
On transferring 22 on the right side, we get
x + y + z = 212\Rightarrow {\text{x + y + z = }}\dfrac{{{\text{21}}}}{2} =10.5 = 10.5 --- (iv)
So option D is correct.
Now we know the sum of the variables and we know there are three variables. We know that,
\Rightarrow Arithmetic mean=sum of the variablestotal number of variables\dfrac{{{\text{sum of the variables}}}}{{{\text{total number of variables}}}}
\Rightarrow Arithmetic mean=x + y + z3\dfrac{{{\text{x + y + z}}}}{3}
On substituting the values from eq. (iv), we get
\Rightarrow Arithmetic mean=2123\dfrac{{\dfrac{{21}}{2}}}{3}
On solving further we get-
\Rightarrow Arithmetic mean=212×13=216\dfrac{{21}}{2} \times \dfrac{1}{3} = \dfrac{{21}}{6}
On division, we get-
\Rightarrow Arithmetic mean=3.53.5
So option B is correct.
On substituting values of eq. (i) in eq. (iv), we get-
x+7=10.5\Rightarrow x + 7 = 10.5
On solving we get-
x=10.57=3.5\Rightarrow {\text{x}} = 10.5 - 7 = 3.5
On substituting value of x in eq. (iii), we get
z = 5 - 3.5 = 1.5\Rightarrow {\text{z = 5 - 3}}{\text{.5 = 1}}{\text{.5}}
On substituting the value of z in eq. (i) we get
y+3.5=9\Rightarrow {\text{y}} + 3.5 = 9
On solving we get-
y = 9 - 3.5 = 5.5\Rightarrow {\text{y = 9 - 3}}{\text{.5 = 5}}{\text{.5}}
So the values of x, y and z are 3.5,5.5,1.53.5,{\text{5}}{\text{.5,1}}{\text{.5}} respectively
And we know the median is the middle value in the given numbers. The middle value is 5.55.5
\Rightarrow Median=5.55.5
So option C is not correct.
Hence the correct options are B and D.

Note: We can also find the median using formula-
Median=[(n + 1)2]th{\left[ {\dfrac{{\left( {{\text{n + 1}}} \right)}}{2}} \right]^{th}} term for odd number of observations.
So on substituting the values we get,
Median =3+12=42=2nd\dfrac{{3 + 1}}{2} = \dfrac{4}{2} = {2^{nd}} term
Second term is 5.55.5 so the median is 5.55.5.