Question
Question: If \(\text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A+si}{{\text{n}}^{3}}\text{A=1,}\) then f...
If sinA + sin2A+sin3A=1, then find the value of cos6A − 4cos4A + 8cos2Ais:-
A). 1.
B). 2.
C). 3.
D). 4
Solution
Try using the equation given to us,sinA + sin2A+sin3A=1,you can use the basic trigonometry property, sin2A + cos2A = 1, which will be helpful in getting to the solution.
Complete step-by-step answer:
We need to find the value of cos6A - 4cos4A + 8cos2A. Let us use the equation given to us.
⇒ sinA + sin2A + sin3A =1
Taking sin2A to the right hand side,
⇒ sinA + sin3A = 1 - sin2A
⇒ sinA(1+sin2A)= cos2A
Here we can substitute the value of sin2A as 1- cos2A
Therefore we will get,
sinA (1+1−cos2A)= cos2A
sinA(2−cos2A)=cos2(A)
Now squatting on both the sides,
sin2A(2−cos2A)2 = cos4A
Again we can replace sin2A by (1−cos2A)
⇒ (1−cos2A)(4+cos4A - 4cos2A)= cos4A
⇒ 4+cos4A - 4cos2A - 4cos2A - cos6A + 4cosA4A = cos4A
Taking all the cos terms on are side,
cos4A - cos4A +4cos2A + 4cos2A + cos6A -4cos4A = 4
⇒ cos6A - 4cos4A + 8cos2A = 4
Hence, our answer will be 4.
Note: In such questions rearrangement of the given equation always leads us to the desired equation. Carefully verify each step before moving into the next step. Additionally some basic trigonometric ideates to keep in mind would be,
sin2θ +cos2θ=1
tan2θ+1=sec2θ
cot2θ+1=cosec2θ.