Solveeit Logo

Question

Question: If \({\text{sin}}\theta {\text{ + cos}}\theta {\text{ = }}\sqrt 2 \cos \left( {90^\circ - \theta }...

If sinθ + cosθ = 2cos(90θ){\text{sin}}\theta {\text{ + cos}}\theta {\text{ = }}\sqrt 2 \cos \left( {90^\circ - \theta } \right), then find the value of cotθ{\text{cot}}\theta .
A. 12 B. 0 C. 21 D. 2  {\text{A}}{\text{. }}\frac{1}{2} \\\ {\text{B}}{\text{. 0}} \\\ {\text{C}}{\text{. }}\sqrt 2 - 1 \\\ {\text{D}}{\text{. }}\sqrt 2 \\\

Explanation

Solution

Hint: - Use trigonometric identity cos(90θ)=sinθ{\text{cos}}\left( {90^\circ - \theta } \right) = \sin \theta

As given in the question let’s first solve the given expression: -
sinθ+cosθ=2cos(90θ)\Rightarrow \sin \theta + \cos \theta = \sqrt 2 \cos \left( {90^\circ - \theta } \right)
Therefore, above expression will become
sinθ+cosθ=2sinθ \Rightarrow \sin \theta + \cos \theta = \sqrt 2 \sin \theta {\text{ }} as we know
cos(90θ)=sinθ{\text{cos}}\left( {90^\circ - \theta } \right) = \sin \theta
so,cosθ = (21)sinθ cotθ=21.  \Rightarrow {\text{so,cos}}\theta {\text{ = }}\left( {\sqrt 2 - 1} \right)\sin \theta \\\ \Rightarrow \cot \theta = \sqrt 2 - {\text{1}}{\text{.}} \\\

Note: - Whenever this kind of question appears always first simplify the equation as much as
possible. Remember in this type of question basic knowledge of trigonometric identities is
must. Remember cosθ\cos \theta always remain positive in the fourth quadrant.