Solveeit Logo

Question

Question: If \({}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{...

If n - 1P3:n + 1P3 = 5:12{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}, find n.

Explanation

Solution

We’ll approach the value of n by simplifying the equation n - 1P3:n + 1P3 = 5:12{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}, for the simplification of this equation we’ll use of the formula
nPr = n!(n - r)!{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.

Complete step by step answer:

Given data: n - 1P3:n + 1P3 = 5:12{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}
Now, solving for n - 1P3:n + 1P3 = 5:12{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}
n - 1P3n + 1P3 = 512\Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}
Using, nPr = n!(n - r)!{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}
(n - 1)!(n - 1 - 3)!(n + 1)!(n + 1 - 3)! = 512\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}
(n - 1)!(n - 1 - 3)!(n + 1 - 3)!(n + 1)! = 512\Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}
On simplification we get,
(n - 1)!(n - 4)!(n - 2)!(n + 1)! = 512\Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}
On Using n! = n(n - 1)!{\text{n! = n(n - 1)!}}, we get,
(n - 1)!(n - 4)!(n - 2)(n - 3)(n - 4)!(n + 1)n(n - 1)! = 512\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}
On cancelling common terms we get,
(n - 2)(n - 3)(n + 1)n = 512\Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}
After cross multiplication we get,
12(n - 2)(n - 3) = 5(n + 1)n\Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}
On expansion we get,
12(n2 - 3n - 2n + 6) = 5(n2 + n)\Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}
12(n2 - 5n + 6) = 5(n2 + n)\Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}
On further simplification we get,
12n2 - 60n + 72 = 5n2 + 5n\Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}
12n2 - 5n2 - 60n - 5n + 72 = 0\Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}
7n2 - 65n + 72 = 0\Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}
Now we’ll split the coefficient of n such that they are the factors of the coefficient of n2{{\text{n}}^{\text{2}}} and independent term, we get,
7n2 - (56 + 9)n + 72 = 0\Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}
7n2 - 56n - 9n + 72 = 0\Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}
On taking factors common we get,
7n(n - 8) - 9(n - 8) = 0\Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}
After taking (n-8) common from both the terms we get,
(n - 8)(7n - 9) = 0\Rightarrow {\text{(n - 8)(7n - 9) = 0}}
i.e n - 8 = 0 or 7n - 9 = 0{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}
n = 8 or n = 97\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}
Since n is a natural number
Answer is n=8

Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by nPr{}^{\text{n}}{{\text{P}}_{\text{r}}}, and this expression is equal to
nPr = n!(n - r)!{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is nCr{}^{\text{n}}{{\text{C}}_{\text{r}}}, and this expression is equal to
nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
nPr = r!nCr{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}
Or for more simplification, we can conclude that
nPr = r!n!r!(nr)! nPr = n!(nr)! \begin{gathered} {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\\ \Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\\ \end{gathered}