Solveeit Logo

Question

Question: If \[{{\text{H}}_n} = 1 + \dfrac{1}{2} + ............ + \dfrac{1}{n}\] , then the value of \[{S_n} =...

If Hn=1+12+............+1n{{\text{H}}_n} = 1 + \dfrac{1}{2} + ............ + \dfrac{1}{n} , then the value of Sn=1+32+53............+(2n1)n{S_n} = 1 + \dfrac{3}{2} + \dfrac{5}{3}............ + \dfrac{{(2n - 1)}}{n} is
(1) Hn+2n\left( 1 \right){\text{ }}{{\text{H}}_n} + 2n
(2) n - 1 + Hn\left( 2 \right){\text{ n - 1 + }}{{\text{H}}_n}
(3) Hn2n\left( 3 \right){\text{ }}{{\text{H}}_n} - 2n
(4) 2nHn\left( 4 \right){\text{ }}2n - {{\text{H}}_n}

Explanation

Solution

Just add 11 and 1 - 1 in the numerators of the given equation of Sn{{\text{S}}_n} for the separation of terms to find the find the value of Sn{{\text{S}}_n} . Then while further solving the equation, at a particular point you will find that one of your terms is equal to the value of Hn{{\text{H}}_n} . These are the major steps for the startup of the solution. After solving the rest of the solution we are able to find the value of Sn{{\text{S}}_n}.

Complete step by step answer:
The given equations are Hn=1+12+............+1n{{\text{H}}_n} = 1 + \dfrac{1}{2} + ............ + \dfrac{1}{n} ------- (i)\left( {\text{i}} \right)
and Sn=1+32+53............+(2n1)n{S_n} = 1 + \dfrac{3}{2} + \dfrac{5}{3}............ + \dfrac{{(2n - 1)}}{n} --------- (ii)\left( {{\text{ii}}} \right)
In the equation (ii)\left( {{\text{ii}}} \right) add and subtract the number 11 in the numerator of all terms. By doing this we get
Sn=(11+1)+(31+12)+(51+13)+.............+(2n11+1n){S_n} = \left( {1 - 1 + 1} \right) + \left( {\dfrac{{3 - 1 + 1}}{2}} \right) + \left( {\dfrac{{5 - 1 + 1}}{3}} \right) + ............. + \left( {\dfrac{{2n - 1 - 1 + 1}}{n}} \right)
=1+(2+12)+(4+13)+.............+((2n2)+1n)= 1 + \left( {\dfrac{{2 + 1}}{2}} \right) + \left( {\dfrac{{4 + 1}}{3}} \right) + ............. + \left( {\dfrac{{\left( {2n - 2} \right) + 1}}{n}} \right)
On solving further we get
=1+(22+12)+(43+13)+.............+(2n2n+1n)= 1 + \left( {\dfrac{2}{2} + \dfrac{1}{2}} \right) + \left( {\dfrac{4}{3} + \dfrac{1}{3}} \right) + ............. + \left( {\dfrac{{2n - 2}}{n} + \dfrac{1}{n}} \right)
=1+22+12+43+13+.............+2(n1)n+1n= 1 + \dfrac{2}{2} + \dfrac{1}{2} + \dfrac{4}{3} + \dfrac{1}{3} + ............. + \dfrac{{2\left( {n - 1} \right)}}{n} + \dfrac{1}{n}
On separating the terms with numerator 11 from the other terms,
== (1+12+13+.........+1n)\left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ......... + \dfrac{1}{n}} \right) ++ (22+43+.............+2(n1)n)\left( {\dfrac{2}{2} + \dfrac{4}{3} + ............. + \dfrac{{2\left( {n - 1} \right)}}{n}} \right)
From the equation (i)\left( {\text{i}} \right) , we can write (1+12+13+.........+1n)\left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ......... + \dfrac{1}{n}} \right) = Hn = {\text{ }}{{\text{H}}_n}
=Hn+(22+43+..............+2(n1)n)= {{\text{H}}_n} + \left( {\dfrac{2}{2} + \dfrac{4}{3} + .............. + \dfrac{{2\left( {n - 1} \right)}}{n}} \right)
On taking 22 common from the term (22+43+..............+2(n1)n)\left( {\dfrac{2}{2} + \dfrac{4}{3} + .............. + \dfrac{{2\left( {n - 1} \right)}}{n}} \right) we get
=Hn+2(12+23+..............+(n1)n)= {{\text{H}}_n} + 2\left( {\dfrac{1}{2} + \dfrac{2}{3} + .............. + \dfrac{{\left( {n - 1} \right)}}{n}} \right)
On making the numerators of the term (12+23+..............+(n1)n)\left( {\dfrac{1}{2} + \dfrac{2}{3} + .............. + \dfrac{{\left( {n - 1} \right)}}{n}} \right) of the form (n1)\left( {n - 1} \right) we get
=Hn+2(212+313+..............+(n1)n)= {{\text{H}}_n} + 2\left( {\dfrac{{2 - 1}}{2} + \dfrac{{3 - 1}}{3} + .............. + \dfrac{{\left( {n - 1} \right)}}{n}} \right)
Again the separate the terms from (212+313+..............+(n1)n)\left( {\dfrac{{2 - 1}}{2} + \dfrac{{3 - 1}}{3} + .............. + \dfrac{{\left( {n - 1} \right)}}{n}} \right) ,
=Hn+2[(22+33+...........+nn)+(1213..........1n)]= {{\text{H}}_n} + 2\left[ {\left( {\dfrac{2}{2} + \dfrac{3}{3} + ........... + \dfrac{n}{n}} \right) + \left( { - \dfrac{1}{2} - \dfrac{1}{3} - .......... - \dfrac{1}{n}} \right)} \right]
In the term (22+33+..........+nn)\left( {\dfrac{2}{2} + \dfrac{3}{3} + .......... + \dfrac{n}{n}} \right) the first term i.e., 11 is missing and therefore we can write this term as n1n - 1 . Also from the term (1213............1n)\left( { - \dfrac{1}{2} - \dfrac{1}{3} - ............ - \dfrac{1}{n}} \right) , take minus sign common.
=Hn+2[n1(12+13+............+1n)]= {{\text{H}}_n} + 2\left[ {n - 1 - \left( {\dfrac{1}{2} + \dfrac{1}{3} + ............ + \dfrac{1}{n}} \right)} \right]
As it is given that Hn=1+12+............+1n{{\text{H}}_n} = 1 + \dfrac{1}{2} + ............ + \dfrac{1}{n}. From this we have 12+13+..........+1n\dfrac{1}{2} + \dfrac{1}{3} + .......... + \dfrac{1}{n} =Hn1 = {{\text{H}}_n} - 1. Therefore the above equation becomes
=Hn+2[n1(Hn1)]= {{\text{H}}_n} + 2\left[ {n - 1 - \left( {{{\text{H}}_n} - 1} \right)} \right]
=Hn+2[n1Hn+1]= {{\text{H}}_n} + 2\left[ {n - 1 - {{\text{H}}_n} + 1} \right]
11 and 1 - 1 will cancel out . So,
=Hn+2[nHn]= {{\text{H}}_n} + 2\left[ {n - {{\text{H}}_n}} \right]
=Hn+2n2Hn= {{\text{H}}_n} + 2n - 2{{\text{H}}_n}
Further simplifying we get
=2nHn= 2n - {{\text{H}}_n}
Therefore the correct option is (4)(4) that is 2nHn2n - {{\text{H}}_n}.

Note:
Remember all the properties we use in the question; this will also help you in solving other questions if needed. Basically, Sn{{\text{S}}_n} represents the sum of n terms of an A.P. It is important to check while solving the problem where you should put the value of Hn{{\text{H}}_n}.