Solveeit Logo

Question

Question: If \(\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0\) then in which o...

If f(x)=x3/2(3x10),x0\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0 then in which of the following intervals f(x) is decreasing?
A(−∞, 0) ∪ (0, ∞)
B(2, ∞)
C(−∞, −1) ∪ [1, ∞)
D(−∞, 0) ∪ [2, ∞)

Explanation

Solution

Since, f(x)=x3/2(3x10),x0\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0 we will find f1(x). We will equate f1(x) = 0 to find points where f(x) changes sign. Then, draw a wavy graph to see where the function is decreasing.

Complete step-by-step answer:
We will first try to understand the concept of decreasing function.
So, a function is decreasing on an interval if f(x1)f(x2)\text{f(}{{\text{x}}_{1}}\text{)}\,\ge \,\text{f(}{{\text{x}}_{2}}). Thus, a decreasing interval may also contain points where the function has a constant value.
Now, we have
f(x)=x3/2(3x10),x0\text{f(x)}\,\text{=}\,{{\text{x}}^{3/2}}\,(3\text{x}-10),\,\text{x}\,\ge \,0
Now, we will find the value of f1(x){{\text{f}}^{\text{1}}}\text{(x)}
f1(x)=ddx(f(x))=ddx(x3/2(3x10)) =ddx(3x5/2  10x3/2  ) =152x3/2  15x12 =152x(x2)\begin{aligned} & {{\text{f}}^{1}}(\text{x})=\dfrac{\text{d}}{\text{dx}}\left( \text{f}(\text{x}) \right)=\dfrac{\text{d}}{\text{dx}}\left( {{\text{x}}^{3/2}}(3\text{x}-10) \right) \\\ & =\dfrac{\text{d}}{\text{dx}}\left( \text{3}{{\text{x}}^{{5}/{2}\;}}-\text{10}{{\text{x}}^{{3}/{2}\;}} \right) \\\ & =\dfrac{15}{2}{{\text{x}}^{{3}/{2}\;}}-15{{\text{x}}^{\dfrac{1}{2}}} \\\ & =\dfrac{15}{2}\sqrt{\text{x}}\,(\text{x}-2) \end{aligned}
For a f(n) to be decreasing:-
f1(x)0{{\text{f}}^{1}}\text{(x)}\,\le \,0
152x(x2)0\dfrac{15}{2}\sqrt{\text{x}}(\text{x}-2)\le 0
x(x2)0\sqrt{\text{x}}(\text{x}-2)\le 0
But x0\sqrt{\text{x}}\ge 0 always
x20 x2butx0 \begin{aligned} & \Rightarrow \text{x}-2\le 0 \\\ & \Rightarrow \,\text{x}\le 2\,\text{but}\,\text{x}\,\ge \,0 \\\ \end{aligned}
None of the options matches with the soln.

Note: We have used the formula.
ddx(axn)=anxn1\dfrac{{\text{d}}}{{{\text{dx}}}}({\text{a}}{{\text{x}}^{\text{n}}}) = {\text{an}}{{\text{x}}^{{\text{n}} - 1}} to calculate f1(x)f^1(x).
Also, if a function f(x) is increasing, we must have f1(x)f^1(x) ≥ 0 & if a function is decreasing, we must have f1(x) ≤ 0.