Solveeit Logo

Question

Question: If \[{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15\] then find the maximum value ...

If f(x)=3x39x227x+15{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15 then find the maximum value of f(x).
A)66 - 66
B)3030
C)30 - 30
D)6666

Explanation

Solution

First find the derivative of the function f(x){{\text{f}}^{'}}\left( {\text{x}} \right) and equate it to zero to find values of x. Then put these values in the second derivative f(x){{\text{f}}^{''}}\left( {\text{x}} \right) of the function. If f(x){{\text{f}}^{''}}\left( {\text{x}} \right) >0 > 0 then f(x) has minima at x, If f(x){{\text{f}}^{''}}\left( {\text{x}} \right) <0 < 0 then f(x) has maxima at x.The maximum value value can be find by putting the value of maxima in f(x).

Complete step-by-step answer:
Given function, f(x)=3x39x227x+15{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15-- (i)
On differentiating the given function w.r.t. x we get,
f(x)=ddx(3x39x227x+15)\Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {3{x^3} - 9{x^2} - 27x + 15} \right)
We know that d(xn)dx=nxn1\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}} and d(constant)dx=0\dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0
On applying this we get,
f(x)=3×3x319×2x2127x11+0\Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 3 \times 3{x^{3 - 1}} - 9 \times 2{x^{2 - 1}} - 27{x^{1 - 1}} + 0
On solving further we get,f(x)=9x218x27 \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9{x^2} - 18x - 27
On putting f(x)=0{{\text{f}}^{'}}\left( {\text{x}} \right) = 0 , we get-
9x218x27=0\Rightarrow 9{x^2} - 18x - 27 = 0
On taking 99 common and transferring on the right side we get-
x22x3=0\Rightarrow {x^2} - 2x - 3 = 0
On factoring we get,
x23x+x3=0\Rightarrow {x^2} - 3x + x - 3 = 0
(x23x)+(x3)=0\Rightarrow \left( {{x^2} - 3x} \right) + \left( {x - 3} \right) = 0
On taking x and 1 common we get,
x(x3)+1(x3)=0\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0
On taking (x3)\left( {x - 3} \right) common we get,
(x3)(x+1)=0\Rightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0
On putting both factors equal to zero we get,
x3=0x=3\Rightarrow x - 3 = 0 \Rightarrow x = 3
or
x+1=0x=1\Rightarrow x + 1 = 0 \Rightarrow x = - 1
Now again differentiate the first derivative w.r.t. x-
f(x)=ddx(9x218x27)\Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {9{x^2} - 18x - 27} \right)
On differentiating we get,
f(x)=9×2x2118x11\Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9 \times 2{x^{2 - 1}} - 18{x^{1 - 1}}
On further solving we get,
f(x)=18x18\Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = 18x - 18 -- (ii)
Now put x=33 in eq. (ii)
f(3)=18×318\Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 18 \times 3 - 18
On solving we get,
f(3)=5418=36\Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 54 - 18 = 36
Now heref(3)=36>0 \Rightarrow {{\text{f}}^{''}}\left( {\text{3}} \right) = 36 > 0
So f(x) has minima at x= 33
Now put x=1 - 1 in eq. (ii)
f(1)=18(1)18\Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = 18\left( { - 1} \right) - 18
On solving we get,
f(1)=1818=36\Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 18 - 18 = - 36
Here,f(1)=36<0 \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 36 < 0
So f(x) has maxima at x=1 - 1
The maximum value of the function f(x) will be at x=1 - 1
So on putting x=33 in eq. (i) we get,
f(x)=3(1)39(1)227(1)+15\Rightarrow {\text{f}}\left( {\text{x}} \right) = 3{\left( { - 1} \right)^3} - 9{\left( { - 1} \right)^2} - 27\left( { - 1} \right) + 15
On simplifying we get,

f(x)=39+27+15 f(x)=12+42=30  \Rightarrow {\text{f}}\left( {\text{x}} \right) = - 3 - 9 + 27 + 15 \\\ \Rightarrow {\text{f}}\left( {\text{x}} \right) = - 12 + 42 = 30 \\\

∴The function has maximum value 3030

Hence option B is the correct answer.

Note: Since f(x) has minima at x= 33 so function also has minimum value. To find the minimum value put the value of x=33 in eq. (i)

f(x)=3(3)39(3)227(3)+15 f(x)=3×279×927×3+15   \Rightarrow {\text{f}}\left( x \right) = 3{\left( 3 \right)^3} - 9{\left( 3 \right)^2} - 27\left( 3 \right) + 15 \\\ \Rightarrow {\text{f}}\left( x \right) = 3 \times 27 - 9 \times 9 - 27 \times 3 + 15 \\\ \\\

On simplifying we get,
f(x)=818181+15=81+15=66\Rightarrow {\text{f}}\left( {\text{x}} \right) = 81 - 81 - 81 + 15 = - 81 + 15 = - 66
So the minimum value of given function is 66 - 66