Solveeit Logo

Question

Question: If \( \text{E}{{+}_{\text{F}{{\text{e}}^{2}}/\text{Fe}}} \) is \( {{\text{x}}_{1}} \) \( \text{E}{{+...

If E+Fe2/Fe\text{E}{{+}_{\text{F}{{\text{e}}^{2}}/\text{Fe}}} is x1{{\text{x}}_{1}} E+Fe3/Fe\text{E}{{+}_{\text{F}{{\text{e}}^{3}}/\text{Fe}}} is x2{{\text{x}}^{2}} then what will be E+Fe/Fe2+{{\text{E}}^{+}}_{\text{Fe}/\text{F}{{\text{e}}^{2+}}} ?

Explanation

Solution

E+{{\text{E}}^{+}} denotes the electrode potential of a cell. And energy produced in a cell is called the Gibbs free energy. Gibbs free energy is given by expression
ΔG=-\Delta \text{G}= nEF
Electrical energy produced in a cell. When ΔG\Delta \text{G} denotes Gibbs free energy
Where ΔG\Delta \text{G} denotes Gibbs free energy
nf= Number of n faraday's electricity generated by cell.
E=6MF of cell.

Complete step by step solution
The EMF of E+Fe2+/Fe=x1{{\text{E}}^{+}}_{\text{F}{{\text{e}}^{2+}}/\text{Fe}}={{\text{x}}_{1}}
The EMF of E+Fe3+/Fe=x2{{\text{E}}^{+}}_{\text{F}{{\text{e}}^{3+}}/\text{Fe}}={{\text{x}}_{2}}
We have to find E+F+/Fe3+{{\text{E}}^{+}}_{\text{F}+/\text{F}{{\text{e}}^{3+}}} =?
Let E+F+/Fe3+=z{{\text{E}}^{+}}_{\text{F}+/\text{F}{{\text{e}}^{3+}}}=\text{z}
The half reaction of E+Fe2+/Fe{{\text{E}}^{+}}_{\text{F}{{\text{e}}^{2+}}/\text{Fe}} is given by
Fe2++2eFe\text{F}{{\text{e}}^{2+}}+\text{2}{{\text{e}}^{-}}\to \text{Fe}
Gibbs free energy of cell =nEF=-\text{nEF}
ΔG+=2Fx1\Delta {{\text{G}}^{+}}=-2\text{F}{{\text{x}}_{1}} …… (1)
The half reaction of E+Fe3+/Fe{{\text{E}}^{+}}_{\text{F}{{\text{e}}^{3+}}/\text{Fe}} is given by
Fe3++3eFe\text{F}{{\text{e}}^{3+}}+\text{3}{{\text{e}}^{-}}\to \text{F}e
ΔG+=3Fx2\Delta {{\text{G}}^{+}}=-3\text{F}{{\text{x}}_{2}} ……. (2)
The half reaction for EFe+/Fe3+{{\text{E}}_{\text{Fe}+/\text{F}{{\text{e}}^{3+}}}} A
Fe+eFe2+\text{F}{{\text{e}}^{+}}-{{\text{e}}^{-}}\to \text{F}{{\text{e}}^{2+}}
ΔG+=(nFz)\Delta {{\text{G}}^{+}}=-\left( \text{nFz} \right)
=Fz=-\text{Fz} ….. (3)
Adding equation (1) & (2) and comparing with (3)
=Fz=2Fx1+(3x1)=-\text{Fz}=-2\text{F}{{\text{x}}_{1}}+\left( -\text{3}{{\text{x}}_{1}} \right)
=Fz=F[2x1+3x2]=-\text{Fz}=-\text{F}\left[ 2{{\text{x}}_{1}}+3{{\text{x}}_{2}} \right]
z=2x4+3x2\text{z}=2{{\text{x}}_{4}}+3{{\text{x}}_{2}}
E+Fe+/Fe2+=2x1+3x2\therefore {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{+}}/\text{F}{{\text{e}}^{2}}^{+}}=2{{\text{x}}_{1}}+3{{\text{x}}_{2}} .

Note
To solve this equation the expression for the Gibbs free energy must be remember, i.e. ΔG=nEF\Delta \text{G}=-\text{nEF} where (F) Faraday's constant and the value of faraday’s is equal to 96485 C mol196485\text{ C mo}{{\text{l}}^{-1}} .
This constant represents the magnitude of electric charge per mole of electrons. Gibbs free energy is associated with a chemical reaction that can be used to do work. It is a Thermodynamic quantity. Negative sign in Gibbs free energy tells us that reactant has more free energy than product.