Solveeit Logo

Question

Question: If \({{\text{e}}_{\text{1}}}\) and \({{\text{e}}_{\text{2}}}\) are respectively, the eccentricity of...

If e1{{\text{e}}_{\text{1}}} and e2{{\text{e}}_{\text{2}}} are respectively, the eccentricity of a hyperbola and its conjugate. Prove that 1e12+1e22=1\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = 1

Explanation

Solution

From the given question, we have to prove that the reciprocal of two eccentricities equal to 11. Now, we have to prove this by finding the eccentricities e1{{\text{e}}_{\text{1}}} and e2{{\text{e}}_{\text{2}}} from the two hyperbolas and substituting in the left hand side (LHS) to get the right hand side (RHS).
The locus of a point whose distance from a fixed point bears a constant ratio, greater than one to its distance from a fixed line is called a hyperbola.

Complete step-by-step solution:
Let e1{{\text{e}}_{\text{1}}} be the eccentricity of hyperbola x2a2y2b2=1\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1 where b2=a2(e121){{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right) and e2{{\text{e}}_{\text{2}}}be the eccentricities of hyperbola y2b2x2a2=1\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1 where a2=b2(e221){{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right).
Then the eccentricity of x2a2y2b2=1\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1 where b2=a2(e121){{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right) is e12=b2a2+1{\text{e}}_{\text{1}}^{\text{2}} = \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} + 1 and the eccentricity of y2b2x2a2=1\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1 where a2=b2(e221){{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right) is e22=a2b2+1{\text{e}}_2^{\text{2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1 .
Now, we are going to prove that the 1e12+1e22\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}is equals to 11
So, we have to substitute the eccentricities e12{\text{e}}_{\text{1}}^{\text{2}} and   e22\;{\text{e}}_{\text{2}}^{\text{2}} in the 1e12+1e22\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} to prove that the answer be equals to 11.
1e12+1e22=1  b2a2+1+1  a2b2+1\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} + 1}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1}}
Now take Least Common Multiple (LCM) on the denominator of right hand side (RHS). Then we get,
1e12+1e22=1  b2a2+a2a2+1  a2b2+b2b2\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} + \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + \dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}}
Simplifying we get,
1e12+1e22=1  b2+a2a2+1  a2+b2b2\Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{1}{{\;\dfrac{{{{\text{b}}^{\text{2}}} + {{\text{a}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}} + \dfrac{1}{{\;\dfrac{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}}
Hence,
1e12+1e22=a2  b2+a2+b2  a2+b2\Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{\;{{\text{b}}^{\text{2}}} + {{\text{a}}^{\text{2}}}}} + \dfrac{{{{\text{b}}^{\text{2}}}}}{{\;{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}
Here, we see that the denominators are same. So, we have to add up the numerators. Then we get,
1e12+1e22=a2+b2a2+b2\Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = \dfrac{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}} + {{\text{b}}^{\text{2}}}}}
1e12+1e22=1\Rightarrow \dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}} = 1 .
Therefore, we proved that the 1e12+1e22\dfrac{1}{{{\text{e}}_1^2}} + \dfrac{1}{{{\text{e}}_2^2}}is equals to 11.
Thus, left hand side (LHS) = right hand side (RHS).
Hence, proved the required result.

Note: We have mind that, The standard equation of the hyperbola is x2a2y2b2=1\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1 where, b2=a2(e121){{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right) .
Also, let e1{{\text{e}}_{\text{1}}} be the eccentricity of hyperbola x2a2y2b2=1\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1 where, b2=a2(e121){{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right) .
Now, we are going to get the eccentricity e1{{\text{e}}_{\text{1}}} from the term b2=a2(e121){{\text{b}}^2} = {{\text{a}}^{\text{2}}}\left( {{\text{e}}_1^{\text{2}} - 1} \right)
b2a2=(e121)\Rightarrow \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} = \left( {{\text{e}}_{\text{1}}^{\text{2}} - 1} \right)
Rearranging the terms,
e12=b2a2+1\Rightarrow {\text{e}}_{\text{1}}^{\text{2}} = \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^{\text{2}}}}} + 1
Hence,
e1=1+b2a2\Rightarrow {{\text{e}}_{\text{1}}} = \sqrt {1 + \dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}}
If the transverse axis along the y-axis and the conjugate axis is along x-axis, then the equation of the hyperbola y2b2x2a2=1\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1 where a2=b2(e221){{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right) .
Let e2{{\text{e}}_{\text{2}}} be the eccentricities of hyperbola y2b2x2a2=1\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1 where a2=b2(e221){{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right) .
Now, we are going to get e2{{\text{e}}_{\text{2}}} from the term a2=b2(e221){{\text{a}}^2} = {{\text{b}}^{\text{2}}}\left( {{\text{e}}_2^{\text{2}} - 1} \right) .
a2b2=(e221)\Rightarrow \dfrac{{{{\text{a}}^2}}}{{{{\text{b}}^{\text{2}}}}} = \left( {{\text{e}}_2^{\text{2}} - 1} \right)
Rearranging the terms we get,
e22=a2b2+1\Rightarrow {\text{e}}_2^{\text{2}} = \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} + 1
Hence,
e2=1+a2b2\Rightarrow {{\text{e}}_2} = \sqrt {1 + \dfrac{{{{\text{a}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}}
Let x2a2y2b2=1\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} - \dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} = 1 and y2b2x2a2=1\dfrac{{{{\text{y}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}} - \dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}} = 1 be the two hyperbola conjugate to each other.