Solveeit Logo

Question

Question: If \[{{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}} = {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{...

If esin(x2+y2)=tan y24+sin1x{{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}} = {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x, then y’(0){\text{y'}}\left( 0 \right) can be
A) 13π\dfrac{1}{{3\sqrt \pi }}
B) 13π - \dfrac{1}{{3\sqrt \pi }}
C) 15π - \dfrac{1}{{5\sqrt \pi }}
D) 135π - \dfrac{1}{{3\sqrt {5\pi } }}

Explanation

Solution

This problem comes under implicit function on differentiation. We need to solve separately and want to differentiate on the function and want to find y and then there will be re arranging and substitute to the equation to compare the coordinates for the solving y(0)=dydxy'(0) = \dfrac{{dy}}{{dx}} which first order differentiation and there will be multiple solvable equation and then complete step by step explanation.

Complete step-by-step answer:
dydx=135π\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }} eSin(x2+y2)= tan y24+sin1x(1){{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)
When x=0x = 0, then the inverse function will be zero and the values of xx will be so, then we get
esiny2= tan y24\Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}
Taking log\log on both sides,
siny2= log tan y24\Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}
Hence we get,
y=±x,±5x,..............y = \pm \sqrt x , \pm \sqrt {5x} ,..............
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
esin(x2+y2)\Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}
esin(x2+y2)cos(x2+y2)(2x+2ydydx)\Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)
Now differentiate Right hand side
tan y24+sin1x\Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x
Differentiating we get,
2y4sec2y24dydx+11x2\Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}
Now again substitute x=0x = 0 and compare,
esiny2[cosy2(2ydydx)]=y2sec2y24dydx(2)\Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)
Now substitute xx value and yy value in equation (2), we get y(0)=dydxy'(0) = \dfrac{{dy}}{{dx}}
Now, at x=0x = 0, y=πy = \sqrt \pi in equation in (2),
esin(π)2[cos(π)22πdydx=π2sec2π24dydx\Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}
Now separate dydx\dfrac{{dy}}{{dx}},
esinπ[cosπ]2πdydx=π2sec2π4dydx\Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}
We know that sinπ=0\sin \pi = 0 and cosπ=1\cos \pi = - 1,
e0[1]2πdydx=π2(secπ4)2dydx\Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}
We know that sec2π4dydx=2{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2 and e0=1{e^0} = 1,
2πdydx=π2×2dydx\Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}
Cancelling the term 22 in denominator and numerator,
\Rightarrow$$$ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}$$ Rearranging the terms we get, \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0$$ Taking common term same as in both terms, $\Rightarrow( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0 Subtracting the terms we get, $\Rightarrow$$$ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0
Hence we get,
\Rightarrow$$$\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}$$ Similarly we can find for when $$x = 0,y = - \sqrt \pi $$ we get \Rightarrow\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}$$ Similarly we can find for when$$x = 0,y = \sqrt {5\pi } $$, we get $\Rightarrow\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}Similarlywecanfindforwhen Similarly we can find for whenx = 0,y = - \sqrt {5\pi } , we get $\Rightarrow$$$\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}
There will be multiple answers and for this question, these are,
\Rightarrow 13π\dfrac{1}{{3\sqrt \pi }}, 13π - \dfrac{1}{{3\sqrt \pi }} and 135π - \dfrac{1}{{3\sqrt {5\pi } }}

\therefore The correct answers are option A) 13π\dfrac{1}{{3\sqrt \pi }}, B) 13π - \dfrac{1}{{3\sqrt \pi }} and D) 135π - \dfrac{1}{{3\sqrt {5\pi } }}

Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.