Solveeit Logo

Question

Question: If \(\text{cosecx}-\text{sinx}={{a}^{3}}\) and \(\sec x-\cos x={{b}^{3}}\), prove that \({{a}^{2}}{{...

If cosecxsinx=a3\text{cosecx}-\text{sinx}={{a}^{3}} and secxcosx=b3\sec x-\cos x={{b}^{3}}, prove that a2b2(a2+b2){{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}}) = 1.

Explanation

Solution

Hint:To solve this question, it is important to be aware about the basic concepts related to trigonometric equations. In this question, we will first try to convert cosec(x) into sin(x) and sec(x) into cos(x). We would then simplify the terms as per a2b2(a2+b2){{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}}) term to get the necessary answer.

Complete step-by-step answer:
The first step of the problem would be to simplify cscxsinx=a3\text{cscx}-\text{sinx}={{a}^{3}} further. Thus, first we convert cosec(x) into sin(x). Then, we get,
1sinxsinx=a3 1sin2xsinx=a3 cos2xsinx=a3 \begin{aligned} & \dfrac{1}{\sin x}-\sin x={{a}^{3}} \\\ & \dfrac{1-{{\sin }^{2}}x}{\sin x}={{a}^{3}} \\\ & \dfrac{{{\cos }^{2}}x}{\sin x}={{a}^{3}} \\\ \end{aligned}
Now, we similarly repeat this for the term secxcosx=b3\sec x-\cos x={{b}^{3}}, this time we convert sec(x) into cos(x). Now, we get,
1cosxcosx=b3 1cos2xcosx=b3 sin2xcosx=b3 \begin{aligned} & \dfrac{1}{\cos x}-\cos x={{b}^{3}} \\\ & \dfrac{1-{{\cos }^{2}}x}{\cos x}={{b}^{3}} \\\ & \dfrac{{{\sin }^{2}}x}{\cos x}={{b}^{3}} \\\ \end{aligned}
Now, we multiply the obtained results, thus, we get,
(cos2xsinx)(sin2xcosx)=a3b3\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)={{a}^{3}}{{b}^{3}}
cos(x)sin(x) = a3b3{{a}^{3}}{{b}^{3}} -- (1)
Now, we observe that we want to evaluate a2b2(a2+b2){{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}}). Thus, we first find a2b2{{a}^{2}}{{b}^{2}}.
Thus, in equation (1), we raise LHS and RHS to the power of 23\dfrac{2}{3}. Doing so, we get,
(cosxsinx)23=a2b2{{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}={{a}^{2}}{{b}^{2}} -- (2)
Next, we proceed to find a2+b2{{a}^{2}}+{{b}^{2}}. For this, we make use of the fact that
a3=(cos2xsinx) b3=(sin2xcosx) \begin{aligned} & {{a}^{3}}=\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right) \\\ & {{b}^{3}}=\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right) \\\ \end{aligned}
Thus, a2=(cos2xsinx)23=(cos43xsin23x) b2=(sin2xcosx)23=(sin43xcos23x) \begin{aligned} & {{a}^{2}}={{\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right) \\\ & {{b}^{2}}={{\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right) \\\ \end{aligned}
Now, we add these results, we get,
a2+b2=(cos43xsin23x)+(sin43xcos23x){{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right)+\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right)
a2+b2=(cos43xcos23x+sin43xsin23xsin23xcos23x){{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x{{\cos }^{\dfrac{2}{3}}}x+{{\sin }^{\dfrac{4}{3}}}x{{\sin }^{\dfrac{2}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)
a2+b2=(cos2x+sin2xsin23xcos23x){{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)
Now, we use the property that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. Thus, we get,
a2+b2=(1sin23xcos23x){{a}^{2}}+{{b}^{2}}=\left( \dfrac{1}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right) -- (3)
Now, we combine the results from (2) and (3). Thus, we get,
(a2b2)(a2+b2)=((cosxsinx)23sin23xcos23x)\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=\left( \dfrac{{{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)
Since, numerator and the denominator are the same, we get,
(a2b2)(a2+b2)=1\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=1
Hence, LHS=RHS, we have proved the above problem.

Note: In this problem, before jumping straight away to evaluate the term a2b2(a2+b2){{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}}), first simplifying the expression in hand helps in solving the problem with ease. One can also try to solvea2b2(a2+b2){{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}}) term directly without simplifying cosec xsinx=a3\text{cosec x}-\sin x={{a}^{3}} and secxcosx=b3\sec x-\cos x={{b}^{3}} terms, however, this would be an extremely tedious task and it may also happen that problem is unsolvable by this method.