Solveeit Logo

Question

Question: If \(\text{cosec}\theta -\cot \theta =p\) , then the value of \(\text{cosec}\theta\) is a. \(\dfr...

If cosecθcotθ=p\text{cosec}\theta -\cot \theta =p , then the value of cosecθ\text{cosec}\theta is
a. 12(p+1p)\dfrac{1}{2}\left( p+\dfrac{1}{p} \right)
b. 12(11p)\dfrac{1}{2}\left( 1-\dfrac{1}{p} \right)
c. 12(1+1p)\dfrac{1}{2}\left( 1+\dfrac{1}{p} \right)
d. (11p)\left( 1-\dfrac{1}{p} \right)

Explanation

Solution

We need to find the value of cosecθ\text{cosec}\theta if cosecθcotθ=p\text{cosec}\theta -\cot \theta =p . We start to solve the given question by expressing the given equation in terms of a trigonometric function sinθ\sin \theta . Then, we find the value of cosecθ\text{cosec}\theta from the value of sinθ\sin \theta .

Complete step by step answer:
We are given an equation cosecθcotθ=p\text{cosec}\theta -\cot \theta =p and need to find the value of cosecθ\text{cosec}\theta in terms of pp . We will be solving the given question by expressing the given equation in terms of a trigonometric function sinθ\sin \theta and then solving for cosecθ\text{cosec}\theta
From trigonometry, we know that cosecθ\text{cosec}\theta is inverse of the trigonometric function sinθ\sin \theta . It is expressed as follows,
cosecθ=1sinθ\Rightarrow \text{cosec}\theta =\dfrac{1}{\sin \theta }
From trigonometry, we know that cotθ\cot \theta is the ratio of the trigonometric functions cosθ\cos \theta and sinθ\sin \theta . It is expressed as follows,
cotθ=cosθsinθ\Rightarrow \cot \theta =\dfrac{\cos \theta }{\sin \theta }
The given equation is,
cosecθcotθ=p\Rightarrow \text{cosec}\theta -\cot \theta =p
Substituting the above values in the equation cosecθcotθ=p\text{cosec}\theta -\cot \theta =p , we get,
1sinθcosθsinθ=p\Rightarrow \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta }=p
Taking the denominator common from both the terms, we get,
(1cosθ)sinθ=p\Rightarrow \dfrac{\left( 1-\cos \theta \right)}{\sin \theta }=p
Shifting sinθ\sin \theta to other side of the equation, we get,
1cosθ=psinθ\Rightarrow 1-\cos \theta =p\sin \theta
1psinθ=cosθ\Rightarrow 1-p\sin \theta =\cos \theta
From the formulae of trigonometry, we know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
We need to find the value of cosθ\cos \theta from the above formula.
sin2θ+cos2θ=1\Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
cos2θ=1sin2θ\Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta
cosθ=1sin2θ\Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }
Substituting the value of cosθ\cos \theta , we get,
1psinθ=1sin2θ\Rightarrow 1-p\sin \theta =\sqrt{1-{{\sin }^{2}}\theta }
Squaring the above equation on both sides, we get,
(1psinθ)2=(1sin2θ)2\Rightarrow {{\left( 1-p\sin \theta \right)}^{2}}={{\left( \sqrt{1-{{\sin }^{2}}\theta } \right)}^{2}}
Simplifying the above equation, we get,
1+p2sin2θ2psinθ=1sin2θ\Rightarrow 1+{{p}^{2}}{{\sin }^{2}}\theta -2p\sin \theta =1-{{\sin }^{2}}\theta
Shifting all the terms to the left-hand side of the equation, we get,
p2sin2θ+sin2θ2psinθ+11=0\Rightarrow {{p}^{2}}{{\sin }^{2}}\theta +{{\sin }^{2}}\theta -2p\sin \theta +1-1=0
(p2+1)sin2θ2psinθ=0\Rightarrow \left( {{p}^{2}}+1 \right){{\sin }^{2}}\theta -2p\sin \theta =0
Taking the value of sinθ\sin \theta common,
sinθ((p2+1)sinθ2p)=0\Rightarrow \sin \theta \left( \left( {{p}^{2}}+1 \right)\sin \theta -2p \right)=0
sinθ=0 or (p2+1)sinθ2p=0\Rightarrow \sin \theta =0\text{ or }\left( {{p}^{2}}+1 \right)\sin \theta -2p=0
We need to express sinθ\sin \theta in terms of pp .
Following the same,
(p2+1)sinθ2p=0\Rightarrow \left( {{p}^{2}}+1 \right)\sin \theta -2p=0
(p2+1)sinθ=2p\Rightarrow \left( {{p}^{2}}+1 \right)\sin \theta =2p
sinθ=2p(p2+1)\Rightarrow \sin \theta =\dfrac{2p}{\left( {{p}^{2}}+1 \right)}
We know that
\Rightarrow cosecθ=1sinθ\text{cosec}\theta =\dfrac{1}{\sin \theta }
Substituting the value of sinθ\sin \theta,
cosecθ=12p(p2+1)\Rightarrow \text{cosec}\theta =\dfrac{1}{\dfrac{2p}{\left( {{p}^{2}}+1 \right)}}
cosecθ=p2+12p\Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{2p}
Dividing each term of numerator with pp, we get,
cosecθ=12(p2p+1p)\Rightarrow \text{cosec}\theta =\dfrac{1}{2}\left( \dfrac{{{p}^{2}}}{p}+\dfrac{1}{p} \right)
Simplifying the above equation, we get,
cosecθ=12(p+1p)\therefore \text{cosec}\theta =\dfrac{1}{2}\left( p+\dfrac{1}{p} \right)

So, the correct answer is “Option a”.

Note: We must know that cosecθ\text{cosec}\theta is the inverse of the trigonometric function sinθ\sin \theta and it is given by cosecθ=1sinθ\text{cosec}\theta =\dfrac{1}{\sin \theta } and not cosecθ=sin1θ\text{cosec}\theta ={{\sin }^{-1}}\theta . The given problem can be solved easily if we know the relationship between the various trigonometric functions such as cotθ,sinθ\cot \theta ,\sin \theta .