Solveeit Logo

Question

Question: If \({{\text{ }}^{2n}}{C_3}{{\text{:}}^n}{C_3} = 44:3\), find the value of n....

If  2nC3:nC3=44:3{{\text{ }}^{2n}}{C_3}{{\text{:}}^n}{C_3} = 44:3, find the value of n.

Explanation

Solution

Hint: Expand the given combinations using the formula nCr=n!r!(nr)!^nC_r=\dfrac{n!}{r!(n-r)!} and simplify. Equate it with the RHS to find the value of n.

Complete step by step answer:

We have the given statement as

2nC3nC2=443 \dfrac{{^{2n}{C_3}}}{{^n{C_2}}} = \dfrac{{44}}{3}

Now expanding these terms by using the combination formula nCr=n!r!(nr)!^nC_r=\dfrac{n!}{r!(n-r)!}, we get

3×2n!3!(2n3)!=44n!2!(n2)!\Rightarrow 3 \times \dfrac{{2n!}}{{3!(2n - 3)!}} = \dfrac{{44n!}}{{2!(n - 2)!}}

33×2×2n!(2n3)!=44n!2×1(n2)!\Rightarrow \dfrac{3}{{3 \times 2}} \times \dfrac{{2n!}}{{(2n - 3)!}} = \dfrac{{44n!}}{{2 \times 1(n - 2)!}}

2n(2n1)(2n2)(2n3)!(2n3)!=44n(n1)(n2)!(n2)!\Rightarrow\dfrac{{2n(2n - 1)(2n - 2)(2n - 3)!}}{{(2n - 3)!}} = \dfrac{{44n(n - 1)(n - 2)!}}{{(n - 2)!}}

2n(2n1)2(n1)=44n(n1)\Rightarrow 2n(2n - 1)2(n - 1) = 44n(n - 1)

n(n1)[4(2n1)44]=0\Rightarrow n(n - 1)[4(2n - 1) - 44] = 0

n(n1)[8n444]=0\Rightarrow n(n - 1)[8n - 4 - 44] = 0

n(n1)[8n48]=0\Rightarrow n(n - 1)[8n - 48] = 0

(n2n)(8n48)=0\Rightarrow ({n^2} - n)(8n - 48) = 0

8n(n1)(n6)=0\Rightarrow 8n(n - 1)(n - 6) = 0

n=0,1,6\Rightarrow n = 0,1,6

The value of n = 6 because n can neither be 0 nor be 1, as 1 would be less than the base value given in the question.

Therefore, n = 6 is the required solution.

Note: The large valued factorial terms must be removed if possible by suitable mathematical manipulations.