Solveeit Logo

Question

Question: If \(\text{ 0}\text{.5 }\) a mole of silver salt is taken and the weight of residue obtained is 216 ...

If  0.5 \text{ 0}\text{.5 } a mole of silver salt is taken and the weight of residue obtained is 216 g. ( Ag = 108 g / mol \text{ Ag = 108 g / mol } ). Then which of the following is correct?
 (C2H3  !!!!  C\-H\-COOH  !!!!  C2H3 )3 + AgNO3(Excess)Silver saltAg(metal) \text{ }{{\left( \begin{matrix} {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}} & {} & {} & {} & {} \\\ \text{ }\\!\\!|\\!\\!\text{ } & {} & {} & {} & {} \\\ \text{C} & \- & \text{H} & \- & \text{COOH} \\\ \text{ }\\!\\!|\\!\\!\text{ } & {} & {} & {} & {} \\\ {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}} & {} & {} & {} & {} \\\ \end{matrix} \right)}_{3}}\text{ + AgN}{{\text{O}}_{\text{3}}}\left( \text{Excess} \right)\to \text{Silver salt}\to \text{Ag(metal) }

Explanation

Solution

The silver salt method is used to determine the molar mass of organic acid. A known amount of organic acid (carboxylic acid) is treated with ammonium hydroxide. The ammonium salt is then treated with a silver nitrate solution to obtain silver salt of organic acid. Obtained silver salt is further ignited to obtain the silver metal as the residue.
 RCOOH AgNO3NH4OHRCOOAgIgnitionAg \text{ RCOOH }\xrightarrow[\text{AgN}{{\text{O}}_{\text{3}}}]{\text{N}{{\text{H}}_{\text{4}}}\text{OH}}\text{RCOOAg}\xrightarrow{\text{Ignition}}\text{Ag }

Complete step by step answer:
We are given the following data:
The number of moles of silver salt is  n = 0.5 \text{ n = 0}\text{.5 }
Weight of residue obtained is equal to  216 g \text{ 216 g }
The molecular weight of silver is  108 g / mol \text{ 108 g / mol }
The reaction between the organic molecules and the silver salt is given as follows,
 ((C2H3)2CHCOOH)3 + AgNO3(Excess)Silver salt Ag(metal) \text{ }{{\left( {{\left( {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}} \right)}_{2}}\text{C}-\text{H}-\text{COOH} \right)}_{3}}\text{ + AgN}{{\text{O}}_{\text{3}}}\left( \text{Excess} \right)\to \text{Silver salt }\to \text{Ag(metal) }
When the known mass organic compound is treated with silver nitrate solution, a silver salt of the organic compound is obtained as the production ignition of silver salt we obtain metallic silver as the residue.
Here 216 g of the silver metal residue is obtained from the organic carboxylic acid. One mole of silver metal corresponds to the 108 g of the silver metal. Thus 216 g of the silver metal residue corresponds to the 2 moles of silver metal.
 1 mole of silver metal = 108 g  216 g of Ag = 216 g 108 g= 2 mole  \begin{aligned} & \text{ 1 mole of silver metal = 108 g } \\\ & \therefore 216\text{ g of Ag = }\dfrac{216\text{ g }}{\text{108 g}}=\text{ 2 mole } \\\ \end{aligned}
In the silver salt method, each proton in the carboxylic acid is replaced by the silver ion. This reaction is as shown below,
 RCOOH AgNO3NH4OHRCOOAgIgnitionAg \text{ RCOOH }\xrightarrow[\text{AgN}{{\text{O}}_{\text{3}}}]{\text{N}{{\text{H}}_{\text{4}}}\text{OH}}\text{RCOOAg}\xrightarrow{\text{Ignition}}\text{Ag }
One mole of carboxylic acid corresponds to one mole of silver residue. But our reaction produces 0.5 \text{0}\text{.5 }moles of the silver salt. Thus there are 4 silver atoms in the reaction.
 2 moles of Ag = n × 0.5 mole of Ag salt n = 20.5= 4 Ag atoms  \begin{aligned} & \text{ 2 moles of Ag = n }\times \text{ 0}\text{.5 mole of Ag salt} \\\ & \Rightarrow \text{n = }\dfrac{2}{0.5}=\text{ 4 Ag atoms } \\\ \end{aligned}
Each silver atom has a valency of 1. The total mass of silver metal residue is equal to the product of valency and the atomic mass of silver. It is given as follows,
 216 = 108 × x × 0.5 mol x = 4  \begin{aligned} & \text{ 216 = 108 }\times \text{ x }\times \text{ 0}\text{.5 mol} \\\ & \Rightarrow \text{x = 4 } \\\ \end{aligned}
Thus the total silver atoms have valency equal to 4.

Hence, (A) is the correct option.

Note: Note that the silver salt method can be used to determine the molar mass of acid. The formula is stated as follows,
 Molar mass of acid = [weight of silver saltweight of silver×108107]×Basicity of acid \text{ Molar mass of acid = }\left[ \dfrac{\text{weight of silver salt}}{\text{weight of silver}}\times 108-107 \right]\times \text{Basicity of acid }
The basicity of acid is equal to the exchangeable protons of acid.