Solveeit Logo

Question

Question: If \(\tan\theta + \tan 2\theta + \sqrt{3}\tan\theta\tan 2\theta = \sqrt{3}\) then \(\tan\theta + \ta...

If tanθ+tan2θ+3tanθtan2θ=3\tan\theta + \tan 2\theta + \sqrt{3}\tan\theta\tan 2\theta = \sqrt{3} then tanθ+tan2θ=3(1tanθtan2θ)\tan\theta + \tan 2\theta = \sqrt{3}(1 - \tan\theta\tan 2\theta)

A

tanθ+tan2θ1tanθtan2θ\frac{\tan\theta + \tan 2\theta}{1 - \tan\theta\tan 2\theta}

B

3\sqrt{3}

C

tan3θ=tan(π/3)\tan 3\theta = \tan(\pi/3)

D

3θ=nπ+π33\theta = n\pi + \frac{\pi}{3}

Answer

tanθ+tan2θ1tanθtan2θ\frac{\tan\theta + \tan 2\theta}{1 - \tan\theta\tan 2\theta}

Explanation

Solution

We have π4cotθ=π2π4tanθ\frac { \pi } { 4 } \cot \theta = \frac { \pi } { 2 } - \frac { \pi } { 4 } \tan \theta

\Rightarrow

sin2θcosθ+3tanθ=0\frac{\sin^{2}\theta}{\cos\theta} + \sqrt{3}\tan\theta = 0 \Rightarrow.