Solveeit Logo

Question

Question: If \(\tan\theta + \sin\theta = m\)and \(\tan\theta - \sin\theta = n,\) then...

If tanθ+sinθ=m\tan\theta + \sin\theta = mand tanθsinθ=n,\tan\theta - \sin\theta = n, then

A

m2n2=4mnm^{2} - n^{2} = 4mn

B

m2+n2=4mnm^{2} + n^{2} = 4mn

C

m2n2=m2+n2m^{2} - n^{2} = m^{2} + n^{2}

D

m2n2=4mnm^{2} - n^{2} = 4\sqrt{mn}

Answer

m2n2=4mnm^{2} - n^{2} = 4\sqrt{mn}

Explanation

Solution

(m+n)=2tanθ,mn=2sinθ(m + n) = 2\tan\theta,m - n = 2\sin\theta

m2n2=4tanθ.sinθ\therefore m^{2} - n^{2} = 4\tan\theta.\sin\theta …..(i)

4mn=4tan2θsin2θ=4sinθ.tanθ4\sqrt{mn} = 4\sqrt{\tan^{2}\theta - \sin^{2}\theta} = 4\sin\theta.\tan\theta …..(ii)

From (i) and (ii), m2n2=4mnm^{2} - n^{2} = 4\sqrt{mn}.