Solveeit Logo

Question

Question: If \(\tan\theta + \sec\theta = e^{x},\) then \(\cos\theta\) equals...

If tanθ+secθ=ex,\tan\theta + \sec\theta = e^{x}, then cosθ\cos\theta equals

A

(ex+ex)2\frac{(e^{x} + e^{- x})}{2}

B

2(ex+ex)\frac{2}{(e^{x} + e^{- x})}

C

(exex)2\frac{(e^{x} - e^{- x})}{2}

D

(exex)(ex+ex)\frac{(e^{x} - e^{- x})}{(e^{x} + e^{- x})}

Answer

2(ex+ex)\frac{2}{(e^{x} + e^{- x})}

Explanation

Solution

tanθ+secθ=ex\tan\theta + \sec\theta = e^{x} …..(i)

secθtanθ=ex\therefore\sec\theta - \tan\theta = e^{- x} …..(ii)

From (i) and (ii), 2secθ=ex+excosθ=2ex+ex.2\sec\theta = e^{x} + e^{- x} \Rightarrow \cos\theta = \frac{2}{e^{x} + e^{- x}}.