Solveeit Logo

Question

Question: If \(\tan\theta = \frac{x\sin\varphi}{1 - x\cos\varphi}\) and \(\tan\varphi = \frac{y\sin\theta}{1 -...

If tanθ=xsinφ1xcosφ\tan\theta = \frac{x\sin\varphi}{1 - x\cos\varphi} and tanφ=ysinθ1ycosθ\tan\varphi = \frac{y\sin\theta}{1 - y\cos\theta}, then xy=\frac{x}{y} =

A

sinφsinθ\frac{\sin\varphi}{\sin\theta}

B

sinθsinφ\frac{\sin\theta}{\sin\varphi}

C

sinφ1cosθ\frac{\sin\varphi}{1 - \cos\theta}

D

sinθ1cosφ\frac{\sin\theta}{1 - \cos\varphi}

Answer

sinθsinφ\frac{\sin\theta}{\sin\varphi}

Explanation

Solution

We have tanθ=xsinφ1xcosφ\tan\theta = \frac{x\sin\varphi}{1 - x\cos\varphi}

1xtanθtanθcosφ=sinφ\Rightarrow \frac{1}{x}\tan\theta - \tan\theta\cos\varphi = \sin\varphi

1x=sinφ+cosφtanθtanθ\Rightarrow \frac{1}{x} = \frac{\sin\varphi + \cos\varphi\tan\theta}{\tan\theta} and tanφ=ysinθ1ycosθ\tan\varphi = \frac{y\sin\theta}{1 - y\cos\theta}

tanφ=sinθ1ycosθ1ytanφtanφcosθ=sinθ\Rightarrow \tan\varphi = \frac{\sin\theta}{\frac{1}{y} - \cos\theta} \Rightarrow \frac{1}{y}\tan\varphi - \tan\varphi\cos\theta = \sin\theta

1ytanφ=sinθ+tanφcosθ\Rightarrow \frac{1}{y}\tan\varphi = \sin\theta + \tan\varphi\cos\theta

1y=sinθ+tanφcosθtanφ\therefore\frac{1}{y} = \frac{\sin\theta + \tan\varphi\cos\theta}{\tan\varphi}

Now xy=[tanθsinφ+cosφtanθ]×[sinθ+tanφcosθtanφ]\frac{x}{y} = \left\lbrack \frac{\tan\theta}{\sin\varphi + \cos\varphi\tan\theta} \right\rbrack \times \left\lbrack \frac{\sin\theta + \tan\varphi\cos\theta}{\tan\varphi} \right\rbrack

=tanθtanφ[sinθ+cosθsinφcosφsinφ+cosφsinθcosθ]=tanθcosθtanφcosφ=sinθsinφ= \frac{\tan\theta}{\tan\varphi}\left\lbrack \frac{\sin\theta + \cos\theta\frac{\sin\varphi}{\cos\varphi}}{\sin\varphi + \cos\varphi\frac{\sin\theta}{\cos\theta}} \right\rbrack = \frac{\tan\theta\cos\theta}{\tan\varphi\cos\varphi} = \frac{\sin\theta}{\sin\varphi}

Aliter : xsinφ=tanθxcosφtanθx\sin\varphi = \tan\theta - x\cos\varphi\tan\theta

x=tanθsinφ+cosφtanθ\Rightarrow x = \frac{\tan\theta}{\sin\varphi + \cos\varphi\tan\theta} =sinθcosθsinφ+cosφsinθ=sinθsin(θ+φ)= \frac{\sin\theta}{\cos\theta\sin\varphi + \cos\varphi\sin\theta} = \frac{\sin\theta}{\sin(\theta + \varphi)}

Similarly, y=sinφsin(θ+φ)y = \frac{\sin\varphi}{\sin(\theta + \varphi)}; xy=sinθsinφ.\therefore\frac{x}{y} = \frac{\sin\theta}{\sin\varphi}.