Question
Question: If \(\tan\theta = \frac{x\sin\varphi}{1 - x\cos\varphi}\) and \(\tan\varphi = \frac{y\sin\theta}{1 -...
If tanθ=1−xcosφxsinφ and tanφ=1−ycosθysinθ, then yx=
A
sinθsinφ
B
sinφsinθ
C
1−cosθsinφ
D
1−cosφsinθ
Answer
sinφsinθ
Explanation
Solution
We have tanθ=1−xcosφxsinφ
⇒x1tanθ−tanθcosφ=sinφ
⇒x1=tanθsinφ+cosφtanθ and tanφ=1−ycosθysinθ
⇒tanφ=y1−cosθsinθ⇒y1tanφ−tanφcosθ=sinθ
⇒y1tanφ=sinθ+tanφcosθ
∴y1=tanφsinθ+tanφcosθ
Now yx=[sinφ+cosφtanθtanθ]×[tanφsinθ+tanφcosθ]
=tanφtanθ[sinφ+cosφcosθsinθsinθ+cosθcosφsinφ]=tanφcosφtanθcosθ=sinφsinθ
Aliter : xsinφ=tanθ−xcosφtanθ
⇒x=sinφ+cosφtanθtanθ =cosθsinφ+cosφsinθsinθ=sin(θ+φ)sinθ
Similarly, y=sin(θ+φ)sinφ; ∴yx=sinφsinθ.