Solveeit Logo

Question

Question: If \(\tan\theta = \frac{a}{b},\) then \(\frac{\sin\theta}{\cos^{8}\theta} + \frac{\cos\theta}{\sin^{...

If tanθ=ab,\tan\theta = \frac{a}{b}, then sinθcos8θ+cosθsin8θ=\frac{\sin\theta}{\cos^{8}\theta} + \frac{\cos\theta}{\sin^{8}\theta} =

A

±(a2+b2)4a2+b2(ab8+ba8)\pm \frac{(a^{2} + b^{2})^{4}}{\sqrt{a^{2} + b^{2}}}\left( \frac{a}{b^{8}} + \frac{b}{a^{8}} \right)

B

±(a2+b2)4a2+b2(ab8ba8)\pm \frac{(a^{2} + b^{2})^{4}}{\sqrt{a^{2} + b^{2}}}\left( \frac{a}{b^{8}} - \frac{b}{a^{8}} \right)

C

±(a2b2)4a2+b2(ab8+ba8)\pm \frac{(a^{2} - b^{2})^{4}}{\sqrt{a^{2} + b^{2}}}\left( \frac{a}{b^{8}} + \frac{b}{a^{8}} \right)

D

±(a2b2)4a2b2(ab8ba8)\pm \frac{(a^{2} - b^{2})^{4}}{\sqrt{a^{2} - b^{2}}}\left( \frac{a}{b^{8}} - \frac{b}{a^{8}} \right)

Answer

±(a2+b2)4a2+b2(ab8+ba8)\pm \frac{(a^{2} + b^{2})^{4}}{\sqrt{a^{2} + b^{2}}}\left( \frac{a}{b^{8}} + \frac{b}{a^{8}} \right)

Explanation

Solution

Given that tanθ=ab\tan\theta = \frac{a}{b} and cos2θ=1tan2θ1+tan2θ=b2a2b2+a2\cos 2\theta = \frac{1 - \tan^{2}\theta}{1 + \tan^{2}\theta} = \frac{b^{2} - a^{2}}{b^{2} + a^{2}}

sinθ=±aa2+b2,cosθ=±ba2+b2\sin\theta = \pm \frac{a}{\sqrt{a^{2} + b^{2}}},\cos\theta = \pm \frac{b}{\sqrt{a^{2} + b^{2}}}

Now, sinθcos8θ+cosθsin8θ=(aa2+b2)(ba2+b2)8+(ba2+b2)(aa2+b2)8\frac{\sin\theta}{\cos^{8}\theta} + \frac{\cos\theta}{\sin^{8}\theta} = \frac{\left( \frac{a}{\sqrt{a^{2} + b^{2}}} \right)}{\left( \frac{b}{\sqrt{a^{2} + b^{2}}} \right)^{8}} + \frac{\left( \frac{b}{\sqrt{a^{2} + b^{2}}} \right)}{\left( \frac{a}{\sqrt{a^{2} + b^{2}}} \right)^{8}}

=a(a2+b2)4b8(a2+b2)1/2+b(a2+b2)4a8(a2+b2)1/2= \frac{a(a^{2} + b^{2})^{4}}{b^{8}(a^{2} + b^{2})^{1/2}} + \frac{b(a^{2} + b^{2})^{4}}{a^{8}(a^{2} + b^{2})^{1/2}}

=±(a2+b2)4a2+b2(ab8+ba8)= \pm \frac{(a^{2} + b^{2})^{4}}{\sqrt{a^{2} + b^{2}}}\left( \frac{a}{b^{8}} + \frac{b}{a^{8}} \right).