Question
Question: If \(\tan\theta = \frac{a}{b},\) then \(\frac{\sin\theta}{\cos^{8}\theta} + \frac{\cos\theta}{\sin^{...
If tanθ=ba, then cos8θsinθ+sin8θcosθ=
A
±a2+b2(a2+b2)4(b8a+a8b)
B
±a2+b2(a2+b2)4(b8a−a8b)
C
±a2+b2(a2−b2)4(b8a+a8b)
D
±a2−b2(a2−b2)4(b8a−a8b)
Answer
±a2+b2(a2+b2)4(b8a+a8b)
Explanation
Solution
Given that tanθ=ba and cos2θ=1+tan2θ1−tan2θ=b2+a2b2−a2
sinθ=±a2+b2a,cosθ=±a2+b2b
Now, cos8θsinθ+sin8θcosθ=(a2+b2b)8(a2+b2a)+(a2+b2a)8(a2+b2b)
=b8(a2+b2)1/2a(a2+b2)4+a8(a2+b2)1/2b(a2+b2)4
=±a2+b2(a2+b2)4(b8a+a8b).