Solveeit Logo

Question

Question: If \(\tan\theta = 0 \Rightarrow \theta = m\pi\), the general value of \(\theta = \pm \sqrt{3} = \tan...

If tanθ=0θ=mπ\tan\theta = 0 \Rightarrow \theta = m\pi, the general value of θ=±3=tan(±π3) θ=nπ±π3\theta = \pm \sqrt{3} = \tan( \pm \frac{\pi}{3})\ \Rightarrow \theta = n\pi \pm \frac{\pi}{3} is.

A

θ=mπ,nπ±π3\theta = m\pi,n\pi \pm \frac{\pi}{3}

B

cos2θ=cos(π2α)2θ=2nπ±(π2α)\cos 2\theta = \cos\left( \frac{\pi}{2} - \alpha \right) \Rightarrow 2\theta = 2n\pi \pm \left( \frac{\pi}{2} - \alpha \right)

C

\Rightarrow

D

θ=nπ±(π4α2)\theta = n\pi \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right)

Answer

\Rightarrow

Explanation

Solution

\Rightarrowcosθ=2(3+1)±4(3+1)21638\cos\theta = \frac{2(\sqrt{3} + 1) \pm \sqrt{4(\sqrt{3} + 1)^{2} - 16\sqrt{3}}}{8}

sinθ=0\sin \theta = 0 cotθ+cot(π4+θ)=2cosθsinθ+cos{(π/4)+θ}sin{(π/4)+θ}=2\cot\theta + \cot\left( \frac{\pi}{4} + \theta \right) = 2 \Rightarrow \frac{\cos\theta}{\sin\theta} + \frac{\cos\{(\pi/4) + \theta\}}{\sin\{(\pi/4) + \theta\}} = 2 \Rightarrowor sin(π4+2θ)=2sinθsin(π4+θ)\sin\left( \frac{\pi}{4} + 2\theta \right) = 2\sin\theta\sin\left( \frac{\pi}{4} + \theta \right).