Question
Question: If \(\tan\theta = 0 \Rightarrow \theta = m\pi\), the general value of \(\theta = \pm \sqrt{3} = \tan...
If tanθ=0⇒θ=mπ, the general value of θ=±3=tan(±3π) ⇒θ=nπ±3π is.
A
θ=mπ,nπ±3π
B
cos2θ=cos(2π−α)⇒2θ=2nπ±(2π−α)
C
⇒
D
θ=nπ±(4π−2α)
Answer
⇒
Explanation
Solution
⇒ ⇒ cosθ=82(3+1)±4(3+1)2−163
sinθ=0 cotθ+cot(4π+θ)=2⇒sinθcosθ+sin{(π/4)+θ}cos{(π/4)+θ}=2 ⇒or sin(4π+2θ)=2sinθsin(4π+θ).