Solveeit Logo

Question

Question: If \(\tan\theta = - \frac{1}{\sqrt{10}}\)and \(\theta\) lies in the fourth quadrant, then \(\cos\the...

If tanθ=110\tan\theta = - \frac{1}{\sqrt{10}}and θ\theta lies in the fourth quadrant, then cosθ=\cos\theta =

A

1/111/\sqrt{11}

B

1/11- 1/\sqrt{11}

C

1011\sqrt{\frac{10}{11}}

D

1011- \sqrt{\frac{10}{11}}

Answer

1011\sqrt{\frac{10}{11}}

Explanation

Solution

We have tanθ=110,\tan\theta = - \frac{1}{\sqrt{10}}, therefore θ\thetais in IV quadrant. So cosθ=+ve\cos\theta = + ve

Now 1+tan2θ=sec2θ1+110=sec2θ1 + \tan^{2}\theta = \sec^{2}\theta \Rightarrow 1 + \frac{1}{10} = \sec^{2}\theta

sec2θ=1110cosθ=(1011)\Rightarrow \sec^{2}\theta = \frac{11}{10} \Rightarrow \cos\theta = \sqrt{\left( \frac{10}{11} \right)}