Question
Question: If \(\tan\theta - \cot\theta = a\) and \(\sin\theta + \cos\theta = b,\) then \((b^{2} - 1)^{2}(a^{2}...
If tanθ−cotθ=a and sinθ+cosθ=b, then (b2−1)2(a2+4) is equal to
A
2
B
– 4
C
± 4
D
4
Answer
4
Explanation
Solution
Given that tanθ−cotθ=a …..(i)
and sinθ+cosθ=b …..(ii)
Now (b2−1)2(a2+4)
={(sinθ+cosθ)2−1}2{(tanθ−cotθ)2+4}
=[1+sin2θ−1]2[tan2θ+cot2θ−2+4]
=sin22θ(cosec2θ+sec2θ)
=4sin2θcos2θ[sin2θ1+cos2θ1]=4.
Trick : Obviously the value of expression (b2−1)2(a2+4) is independent of θ, therefore put any suitable value of θ. Let θ=45∘, we get a=0,6mub=2so that [(2)2−1]2 (02+4)=4.