Question
Question: If tan<sup>–1</sup> x + tan<sup>–1</sup> y + tan<sup>–1</sup> z = π, then\(\frac{1}{xy}\)+ \(\frac{1...
If tan–1 x + tan–1 y + tan–1 z = π, thenxy1+ yz1+ zx1=
A
0
B
1
C
xyz1
D
xyz
Answer
1
Explanation
Solution
tan–1 x + tan–1 y + tan–1 z = π
⇒ tan–1 [1−(xy+yz+zx)x+y+z−xyz]= π
⇒ 1−(xy+yz+zx)x+y+z−xyz= tan π = 0
⇒ x + y + z – xyz = 0⇒ +
+ zx1 = 1