Solveeit Logo

Question

Question: If \(\tanh^{2}x = \tan^{2}\theta,\) then \({\cos h}2x\) is equal to...

If tanh2x=tan2θ,\tanh^{2}x = \tan^{2}\theta, then cosh2x{\cos h}2x is equal to

A

sin2θ- \sin 2\theta

B

sec2θ\sec 2\theta

C

cos3θ\cos 3\theta

D

cos2θ\cos 2\theta

Answer

sec2θ\sec 2\theta

Explanation

Solution

cosh2x=1+tanh2x1tanh2x=1+tan2θ1tan2θ\cos h2x = \frac{1 + \tan h^{2}x}{1 - \tan h^{2}x} = \frac{1 + \tan^{2}\theta}{1 - \tan^{2}\theta}

=11tan2θ1+tan2θ=1cos2θ=sec2θ\frac{1}{\frac{1 - \tan^{2}\theta}{1 + \tan^{2}\theta}} = \frac{1}{\cos 2\theta} = \sec 2\theta