Solveeit Logo

Question

Question: If \(\tanh x=\dfrac{12}{13}\), how do you find the values of the other hyperbolic functions at \(x\)...

If tanhx=1213\tanh x=\dfrac{12}{13}, how do you find the values of the other hyperbolic functions at xx ?

Explanation

Solution

We explain the function arctan(x)\arctan \left( x \right). We express the inverse function of tan in the form of arctan(x)=tan1x\arctan \left( x \right)={{\tan }^{-1}}x. It’s given that tanx=1213\tan x=\dfrac{12}{13}. Thereafter we take all the other hyperbolic functions at xx of that angle to find the solution. We also use the representation of a right-angle triangle with height and base ratio being 1213\dfrac{12}{13} and the angle being θ\theta .

Complete step by step answer:
The hyperbolic functions are analogues of the ordinary trigonometric functions. All the usual relations are also used for the hyperbolic functions. It’s given that tanhx=1213\tanh x=\dfrac{12}{13}. We can find the value of sechx\operatorname{sech}x from the relation of (sechx)2=1+(tanhx)2{{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \tanh x \right)}^{2}}.
Putting the value, we get
(sechx)2=1+(1213)2 (sechx)2=313169{{\left( \operatorname{sech}x \right)}^{2}}=1+{{\left( \dfrac{12}{13} \right)}^{2}}\\\ \Rightarrow{{\left( \operatorname{sech}x \right)}^{2}}=\dfrac{313}{169}
Now taking square root we get

\Rightarrow \left( \operatorname{sech}x \right)=\dfrac{\sqrt{313}}{13}$$ Now we know the relation $$\cosh x=\dfrac{1}{\operatorname{sech}x}$$. Putting the value, we get, $$\cosh x=\dfrac{1}{\operatorname{sech}x}\\\ \Rightarrow\cosh x=\dfrac{1}{\dfrac{\sqrt{313}}{13}}\\\ \Rightarrow\cosh x=\dfrac{13}{\sqrt{313}}$$ We know the sum of square law of, ${{\left( \sinh x \right)}^{2}}+{{\left( \cosh x \right)}^{2}}=1$ Putting the value of $$\cosh x$$, we get ${{\left( \sinh x \right)}^{2}}=1-{{\left( \cosh x \right)}^{2}}\\\ \Rightarrow{{\left( \sinh x \right)}^{2}}=1-{{\left( \dfrac{13}{\sqrt{313}} \right)}^{2}}\\\ \Rightarrow{{\left( \sinh x \right)}^{2}}=\dfrac{144}{313}$ Taking square root, we get $\sinh x=\dfrac{12}{\sqrt{313}}$ We also have the relations $$\coth x=\dfrac{1}{\tanh x}$$ and $$\operatorname{csch}x=\dfrac{1}{\sinh x}$$. Putting the values, we get $$\coth x=\dfrac{1}{\tanh x}\\\ \Rightarrow\coth x=\dfrac{1}{\dfrac{12}{13}}\\\ \Rightarrow\coth x=\dfrac{13}{12}$$ And similarly, $$\operatorname{csch}x=\dfrac{1}{\sinh x}\\\ \Rightarrow\operatorname{csch}x =\dfrac{1}{\dfrac{12}{\sqrt{313}}}\\\ \therefore\operatorname{csch}x =\dfrac{\sqrt{313}}{12}$$ **Hence, in this way we have found all other hyperbolic functions.** **Note:** We can also apply the trigonometric triangle image form to get the value of other hyperbolic functions. In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.