Solveeit Logo

Question

Question: If \[{{\tanh }^{-1}}\left( x+iy \right)=\dfrac{1}{2}{{\tanh }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}+{{y...

If tanh1(x+iy)=12tanh1(2x1+x2+y2)+i2tan1(2y1x2y2);x,yR{{\tanh }^{-1}}\left( x+iy \right)=\dfrac{1}{2}{{\tanh }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}+{{y}^{2}}} \right)+\dfrac{i}{2}{{\tan }^{-1}}\left( \dfrac{2y}{1-{{x}^{2}}-{{y}^{2}}} \right);x,y\in R then tanh1(iy){{\tanh }^{-1}}\left( iy \right) is
1)tanh1y{{\tanh }^{-1}}y
2) itanh1y-i{{\tanh }^{-1}}y
3) itan1yi{{\tan }^{-1}}y
4) tan1y-{{\tan }^{-1}}y

Explanation

Solution

In this problem, we have to find the value for the given trigonometric expression. We are given a condition that x and y belong to real numbers. We can first write the given expression we can then substitute 0 for x and simplify the terms step by step. We can cancel the inverse and the trigonometric functions and simplify it to get the required answer.

Complete step by step solution:
Here we have to find the value of the given expression.
We know that the expression given is
tanh1(x+iy)=12tanh1(2x1+x2+y2)+i2tan1(2y1x2y2);x,yR{{\tanh }^{-1}}\left( x+iy \right)=\dfrac{1}{2}{{\tanh }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}+{{y}^{2}}} \right)+\dfrac{i}{2}{{\tan }^{-1}}\left( \dfrac{2y}{1-{{x}^{2}}-{{y}^{2}}} \right);x,y\in R
Let y=tanθy=\tan \theta
We can now substitute x = 0 in the above given expression, we get
tanh1(0+iy)=12tanh1(01+y2)+i2tan1(2y1y2)\Rightarrow {{\tanh }^{-1}}\left( 0+iy \right)=\dfrac{1}{2}{{\tanh }^{-1}}\left( \dfrac{0}{1+{{y}^{2}}} \right)+\dfrac{i}{2}{{\tan }^{-1}}\left( \dfrac{2y}{1-{{y}^{2}}} \right)
We can now simplify the above step, we get
tanh1(iy)=0+i2tan1(2y1y2)\Rightarrow {{\tanh }^{-1}}\left( iy \right)=0+\dfrac{i}{2}{{\tan }^{-1}}\left( \dfrac{2y}{1-{{y}^{2}}} \right)
We can now substitute (1) in the RHS, we get
tanh1(iy)=0+i2tan1(2tanθ1tan2θ)\Rightarrow {{\tanh }^{-1}}\left( iy \right)=0+\dfrac{i}{2}{{\tan }^{-1}}\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)
We can now substitute tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } in the above step, we get
tanh1(iy)=i2tan1tan2θ\Rightarrow {{\tanh }^{-1}}\left( iy \right)=\dfrac{i}{2}{{\tan }^{-1}}\tan 2\theta
We can now cancel the tangent and the arc tangent, we get
tanh1(iy)=iθ\Rightarrow {{\tanh }^{-1}}\left( iy \right)=i\theta
From (1), we can write theta as,
tanh1(iy)=itan1y\Rightarrow {{\tanh }^{-1}}\left( iy \right)=i{{\tan }^{-1}}y
Hence, the value of tanh1(iy)=itan1y{{\tanh }^{-1}}\left( iy \right)=i{{\tan }^{-1}}y.
Therefore, the answer is option 3) itan1yi{{\tan }^{-1}}y.

Note: We should always remember that the tangent and the arctangent get cancelled as they are inverse to each other. We should always remember some of the trigonometric identities such as tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }. We should concentrate while simplifying the terms and write the final answer. We should know that when y=tanθy=\tan \theta , then the theta value can be written as θ=tan1y\theta ={{\tan }^{-1}}y.