Solveeit Logo

Question

Mathematics Question on Number of Tangents from a Point on a Circle

If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then ∠POA is equal to

A

50°

B

60°

C

70°

D

80°

Answer

50°

Explanation

Solution

It is given that PAPA and PBPB are tangents.

Therefore, the radius drawn to these tangents will be perpendicular to the tangents.
Thus, OAPAOA ⊥ PA and OBPBOB ⊥ PB
OBP=90º∠OBP = 90º
OAP=90º∠OAP = 90º
In AOBPAOBP,
Sum of all interior angles =360º= 360º
OAP+APB+PBO+BOA=360º∠OAP + ∠APB +∠PBO + ∠BOA = 360º
90º+80º+90º+BOA=360º90º + 80º +90º + BOA = 360º
BOA=100º∠BOA = 100º
In ΔOPBΔOPB and ΔOPAΔOPA,
AP=BPAP = BP (Tangents from a point)
OA=OBOA = OB (Radii of the circle)
OP=OPOP = OP (Common side)
Therefore, ΔOPBΔOPAΔOPB ≅ ΔOPA (SSS congruence criterion)
AB,PP,OOA ↔ B, P ↔ P, O ↔ O
And thus, POB=POA∠POB = ∠POA
POA=12AOB∠POA = \frac 12∠AOB

POA=100º2∠POA = \frac {100º}{2}
POA=∠POA= 50º50º

Hence, the correct option is (A): 50º50º