Solveeit Logo

Question

Question: If tangents are drawn to the ellipse x<sup>2</sup> + 2y<sup>2</sup> = 2, then the locus of the mid-p...

If tangents are drawn to the ellipse x2 + 2y2 = 2, then the locus of the mid-point of the intercept made by the tangents between the co-ordinate axes is –

A

12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1

B

14x2+12y2=1\frac{1}{4x^{2}} + \frac{1}{2y^{2}} = 1

C

x22+y24=1\frac{x^{2}}{2} + \frac{y^{2}}{4} = 1

D

x24+y22=1\frac{x^{2}}{4} + \frac{y^{2}}{2} = 1

Answer

12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1

Explanation

Solution

x22+y21=1\frac{x^{2}}{2} + \frac{y^{2}}{1} = 1 [a=2b=1 \left\lbrack \begin{matrix} a = \sqrt{2} \\ b = 1 \end{matrix} \right.\

Eq. of tangent at point R ̃ T = 0

[x(2cosϕ)2+y(1sinϕ)1=1x=0y=1sinϕy=0x=2cosϕ\left[ \begin{array} { l } \frac { x ( \sqrt { 2 } \cos \phi ) } { 2 } + \frac { y ( 1 \sin \phi ) } { 1 } = 1 \\ x = 0 \Rightarrow y = \frac { 1 } { \sin \phi } \\ y = 0 \Rightarrow x = \frac { \sqrt { 2 } } { \cos \phi } \end{array} \right.

Locus of mid point of PQ ̃ PQ ̃ PM = QM

M (h, k) ̃ Locus = ?

M{h=(2cosφ+0)/2cosφ=12hk=(1sinφ+0)/2sinφ=12k \left\{ \begin{matrix} h = \left( \frac{\sqrt{2}}{\cos\varphi} + 0 \right)/2 \Rightarrow \cos\varphi = \frac{1}{\sqrt{2}h} \\ k = \left( \frac{1}{\sin\varphi} + 0 \right)/2 \Rightarrow \sin\varphi = \frac{1}{2k} \end{matrix} \right.\

̃ cos2 f + sin2 f = 1 ̃ 12x2+14y2\frac{1}{2x^{2}} + \frac{1}{4y^{2}} = 1