Solveeit Logo

Question

Question: If tangent to the curve y<sup>2</sup> = x<sup>3</sup> at point (m<sup>2</sup>, m<sup>3</sup>) is als...

If tangent to the curve y2 = x3 at point (m2, m3) is also a normal to the curve at point (M2, M3), then mM is equal to –

A

– 1/9

B

– 2/9

C

– 1/3

D

– 4/9

Answer

– 4/9

Explanation

Solution

y2 = x3 differentiating Ž 2y. dydx\frac{dy}{dx} = 3x2

Ž (dydx)(m2,m3)\left( \frac{dy}{dx} \right)_{(m^{2},m^{3})} = 3x22y\frac{3x^{2}}{2y} = 3m42m3\frac{3m^{4}}{2m^{3}} = 32\frac{3}{2} m

Slope of normal = 1(dydx)(M2,M3)\frac{–1}{\left( \frac{dy}{dx} \right)}_{(M^{2},M^{3})} = – (2y3x2)\left( \frac{2y}{3x^{2}} \right)

= – 2M33M4\frac{2M^{3}}{3M^{4}} = – 23M\frac{2}{3M}

Ž 32\frac{3}{2}m = – 23M\frac{2}{3M} Ž mM=49\begin{matrix} mM = –\frac{4}{9} \end{matrix}