Solveeit Logo

Question

Mathematics Question on Application of derivatives

If tangent to the curve y2=x3y^2 = x^3 at its point (m2,m3)(m^2, m^3) is also normal to the curve at (M2,M3)(M^2, M^3), then what is the value of mM ?

A

-0.111111111

B

-0.222222222

C

-0.333333333

D

-0.444444444

Answer

-0.444444444

Explanation

Solution

Equation of the given curve is y2=x3y^2 = x^3 ...(1) On differentiating with respect to x 2ydydx=3x22y \frac{dy}{dx}=3x^{2} dydx=3x22y \Rightarrow \frac{dy}{dx} = \frac{3x^{2}}{2y} Now , (dydx)(m2,m3)=3m42m3=32m \left(\frac{dy}{dx}\right)_{\left(m^{2} , m^{3}\right) } = \frac{3m^{4}}{2m^{3}} = \frac{3}{2}m and (dydx)(M2,M3)=3M42M3=32M\left(\frac{dy}{dx}\right)_{\left(M^{2} , M^{3}\right)} = \frac{3M^{4}}{2M^{3}} = \frac{3}{2} M Equation of tangents at point (m2,m3)\left(m^{2} , m^{3}\right) is (ym3)=32m(xm2)\left(y -m^{3}\right) = \frac{3}{2} m\left(x - m^{2}\right) 2y2m3=3mx3m3\Rightarrow2y - 2m^{3} = 3 mx - 3m^{3} 3mx2y=3m32m3 \Rightarrow 3 mx - 2y = 3m^{3} - 2m^{3} 3mx2y=m3\Rightarrow 3 mx - 2y = m^{3} ....(2) Equation of normal at point (M2,M3)(M^2, M^3) is (yM3)=23M(xM2) \left(y -M^{3}\right) = - \frac{2}{3M} \left(x - M^{2}\right) 3My3M4=2x+2M2\Rightarrow 3My -3M^{4} = -2x + 2M^{2} 2x+3My=3M4+2M2\Rightarrow 2x + 3 My = 3M^{4} + 2M^{2} .....(3) Since, equation (2) and (3) are same 3m2=23M=m33M4+2M2\Rightarrow \frac{3m}{2} = \frac{-2}{3M} = \frac{m^{3} }{3M^{4} + 2M^{2}} 3m2=23M\Rightarrow \frac{3m}{2} = - \frac{2}{3M} mM=49\Rightarrow mM = - \frac{4}{9}